Selected papers presented at the $5^{\text {th }}$ Network Gender \&
STEM Conference, 29-30 July
2021, in Sydney, Australia

In association with

Is There any Evidence of Historical Changes in Gender Differences in American High School Students' Math Competence-Related Beliefs from the 1980s to the 2010s?

Charlott Rubach ${ }^{\mathbf{1 , 2}}$, Glona Lee ${ }^{\mathbf{2}, \text { Christine R. Starr², Yannan Gao², Nayssan }}$ Safavian², Anna-Lena Dicke², Jacquelynne S. Eccles², \& Sandra D. Simpkins ${ }^{2}$
${ }^{1}$ Universität Rostock, Germany, ${ }^{2}$ University of California, Irvine, USA

Abstract

In this replication study, we examined gender differences in students' math competence-related beliefs from 9th to 12th grade and tested gender differences within four racial/ethnic groups. In order to test the potential historical changes in these patterns and to counteract the replication crisis in psychology, this study employed six U.S. datasets collected from the 1980s to 2010s. Using a total sample of 24,290 students (49.5\% male students; 11\% African-, 9\% Asian-; 30\% Latinxand 50% European-Americans), we found gender differences in students' math competence-related beliefs favoring boys at all grade levels. By comparing effect sizes across datasets, we found no evidence that these gender differences varied by dataset or by historical time. The results across race/ethnicity with a subsample of 23,070 students indicated meaningful gender differences in students' math competence-related beliefs favoring boys at all grade levels among Asian-, European-, and Latinx-Americans, but not among African-Americans where differences favored girls in 12th grade. Overall, our findings provide no evidence of historical changes concerning gender differences in students' math competencerelated beliefs across datasets. Our findings illustrate the importance of replicating empirical findings across datasets and using an intersectional lens to investigate math motivation.

KEYWORDS

Math self-concept, math self-efficacy, replication, intersectionality, gender, race/ethnicity

This journal uses Open Journal Systems 3.3.0.11, which is open source journal management and publishing software developed, supported, and freely distributed by the Public Knowledge Project under the GNU General Public License.

Is There any Evidence of Historical Changes in Gender Differences in American High School Students' Math Competence-Related Beliefs from the 1980s to the 2010s?

INTRODUCTION

Women, African-Americans, and Latinx-Americans continue to be underrepresented in many math-intensive STEM occupations (Honey et al., 2020; NCSES, 2021). Scholars have argued that these disparities are partly due to differences in contextual influences, including limited opportunities, structural barriers, and discrimination that diminish individuals' motivation to pursue STEM (Cheryan et al., 2020; Wang \& Degol, 2017). Though scholars have charted trends in STEM occupations over time and countless initiatives have been funded to bolster marginalized students' motivation to pursue STEM (National Center for Science and Engineering Statistics, 2021), little empirical evidence exists on whether the differences in students' motivational beliefs have shifted over time.

To address this gap, the goal of this study was to test if gender differences in high school students' math competence-related beliefs differed across six U.S. datasets than span from the 1980s to 2010s. This study focused on math competencerelated beliefs in $9^{\text {th }}$ through $12^{\text {th }}$ grade as high school is a pivotal period for STEM motivation development and students' high school math competence-related beliefs are central determinants of students' future STEM aspirations and choices (Botella et al., 2019; Lazarides et al., 2021). Moreover, much of the existing literature focuses on gender differences across all youth. However, emerging work suggests that gender differences may vary by race/ethnicity (Else-Quest et al., 2013; Seo et al., 2019). We extend prior research by examining gender differences overall and within the four largest racial/ethnic groups in the U.S. (i.e., African-, Asian-, European-, and Latinx-Americans), and by systematically testing if these gender differences replicate across the six datasets.

Motivational theories

Several motivational theories highlight the importance of students' perceptions of their abilities and skills, which we label competence-related beliefs (for review, see Muenks et al., 2018). Competence-related beliefs include students' (a) expectancies of success as described in situated expectancy-value theory (Eccles \& Wigfield, 2020), (b) self-efficacy from social cognitive theory (Bandura, 1997), (c) ability self-concepts from self-concept theory (Marsh \& Martin, 2011) and (d) competence experiences from self-determination theory (Deci \& Ryan, 1985). Though these constructs are somewhat different based on, for example, their normativity as well as the specificity of students' evaluations based on context and time (Bong \& Skaalvik, 2003), they share conceptual similarities in their focus on perceived competence explained by psychological processes, such as social comparisons or mastery experiences, and in their domain-specificity (Bong \& Skaalvik, 2003; Muenks et al., 2018).

According to these theories, motivational processes are situated within and influenced by the contexts in which students are embedded (Bandura, 1997; Eccles
\& Wigfield, 2020). One central aspect of students' context is the historical moment - both in terms of students' age and the historical time in which students grow up. Several scholars have described the changes in students' competence-related beliefs due to students' age (Fredricks \& Eccles, 2002; Scherrer \& Preckel, 2019; Wigfield, Eccles, Fredericks, Simpkins, Roeser \& Schiefele, 2015); yet, few have examined differences based on historical time (Parker et al., 2018; Scherrer \& Preckel, 2019). One meta-analytic study suggests that students' math competencerelated beliefs decline at a similar rate across data from different decades (Scherrer \& Preckel, 2019). In addition, Parker and colleagues (2018) found no evidence of historical changes concerning gender differences in Australian students' STEM competence-beliefs from 1981 to 1993. However, to our knowledge, no replication study has addressed historical changes in gender differences in U.S. students' math competence-related beliefs and whether gender differences replicate across racial/ethnic groups, which is paramount given the growing diversity in the U.S.

Gender differences overall

Multiple theories, such as social comparison theory, social cognitive theory, and situated expectancy-value theory, argue that the social environment and social processes determine students' competence-related beliefs (see Bandura, 1997; Eccles \& Wigfield, 2020; Skaalvik \& Rankin, 1990). For example, situated expectancy-value theory (Eccles \& Wigfield, 2020) helps explain the interrelations of various social and demographic components with individuals' competence-related beliefs. Specifically, this theory argues that motivational processes are situated within a student's sociocultural context which is known as the cultural milieu. Aspects of the cultural milieu, including societal norms and stereotypes about demographic groups (e.g., gender, race/ethnicity, socioeconomic status), influence their competence-related beliefs (Eccles \& Wigfield, 2020).

In this study, we focus on gender as the primary explanatory factor of students' math competence-related beliefs as many STEM fields have been historically defined as gendered, where male students hold more privilege than female students. For example, many STEM fields, including math, are stereotyped as masculine domains (Miller et al., 2018). Girls perceive their competence in math activities as lower than boys in spite of demonstrating comparable academic achievement - illustrating the power of society's beliefs about social categories (Bandura, 1997). In line with theoretical assumptions, studies utilizing datasets from the 1980s to 2000s found gender differences concerning math competencerelated beliefs. Specifically, cross-sectional findings suggest that high school boys' math competence-related beliefs are higher than girls' beliefs (Else-Quest et al., 2013, 2010; Skaalvik \& Rankin, 1994; Marsh et al., 2021; Watt et al., 2012). Parallel patterns favoring boys have emerged in most longitudinal studies (Fredricks \& Eccles, 2002; Graham \& Morales-Chicas, 2015; Jiang et al., 2020; Nagy et al., 2010; Umarji et al., 2021; Watt, 2004). Also, a meta-analysis of 176 studies demonstrated gender differences favoring boys in students' math expectancies for success (Parker et al., 2020). The effect sizes typically range from $|.15 \geq d \leq .37|$ (Else-Quest et al., 2010, 2013; Parker et al., 2020). Collectively, these works suggest that gender differences have persisted over time and are unlikely to vary across historical time.

However, numerous efforts have been launched to counteract gender disparities in STEM. For example, there has been an increasing interest in promoting diversity in STEM education across U.S. colleges and high schools (Granovskiy, 2018). General policies, however, often focus on counteracting gendered achievement and participation gaps in STEM. Efforts at the college level often focused on increasing the enrollment of women in STEM college majors, improving recruitment and retention of women, and counteracting the achievement gap between male and female students in STEM classes (see NASEM, 2020; NCSES, 2021). Though women's enrollment in many STEM college majors (e.g., computer sciences, engineering, mathematics, and statistics) has increased over the last few decades (NCSES, 2021), men continue to account for the majority of majors in many STEM fields.

At the high school level, interventions have been launched to counteract gender disparities in STEM (for reviews of these interventions, see Lee et al., 2021; Levene \& Pantoja, 2021). One example is the growth mindset interventions that aim to lessen gender differences in competence-related beliefs (e.g., Blackwell et al., 2007; Lee et al., 2021; Yeager et al., 2019). Lee and colleagues (2021) summarized different strategies used in interventions to promote math competence-related beliefs, including communicating that individuals' skills and intelligence are not fixed and can develop, and that the brain is malleable. However, these intervention studies are more recent and have been conducted over short periods of time-making it unclear if the intervention effects are susceptible to fade out over time (Bailey et al., 2020). Moreover, interventions are not widely implemented, and NASEM (2020) appropriately highlights that the underrepresentation of women in STEM is a systemic problem that needs to be addressed through policy changes. Though interventions aimed at reducing gender disparities in students' math competence-related beliefs have been shown to be effective (see Lee et al., 2021; Levene \& Pantoja, 2021), these efforts are isolated and do not represent widespread policy changes. Thus, we expected gender differences in students' math competence beliefs to persist across historical time.

Gender Differences Within Racial/Ethnic Groups - An Intersectional Lens

 Gender and race/ethnicity have often been examined separately in research, but they are not isolated factors and codetermine individuals' beliefs (Else-Quest \& Hyde, 2016; Hyde, 2007; Parker et al., 2020). An intersectional approach captures the idea that individuals' experiences within one social identity are influenced by their other social identities (Crenshaw, 2019). Thus, examining how the intersection of gender and race/ethnicity explains students' competence-related beliefs is crucial. For example, even though male students, on average, are expected to hold more privilege than female students in STEM, this pattern may not be universal. We can ask what happens if an individual simultaneously experiences a positively stereotyped social identity and negatively stereotyped social identity (i.e., an African-American male student whose race/ethnicity but not gender is marginalized in STEM, see Hsieh, Simpkins \& Eccles, 2021).So why might gender differences in students' competence-related beliefs vary by race/ethnicity? Racial/ethnic stereotypes and discrimination impact motivation and could weaken or exacerbate marginalization due to one's gender. For example, the model minority stereotype for Asian-Americans includes the assumption that they excel in math, which could lessen the difference between male and female AsianAmerican students as both are expected to exhibit high math achievement (Trytten et al., 2012). Moreover, Latinx-Americans and African-Americans are more likely to face discrimination based on English fluency, social class, and skin color in the U.S. (Alfaro et al., 2009; Rosenbloom \& Way, 2004). Two U.S. studies found that African-American girls felt adults underestimated their STEM abilities both due to their gender and race (Archer et al., 2015; Bruning et al., 2015). These racist and sexist experiences for these groups invariably shape their perceptions about their academic abilities and success in STEM (Eccles \& Wigfield, 2020); both male and female students of these racial/ethnic groups may get marginalized in STEM thereby lessening gender differences in each of these groups.

Though gender differences have been examined extensively, very little is known about whether gender differences replicate in each of the four largest racial/ethnic groups in the U.S. Some initial findings suggest gender differences do not necessarily replicate across all races/ethnicities (Hsieh et al., 2021; Parker et al., 2020). For example, gender differences favoring male high school students in math ability self-concepts have emerged for European-Americans and Latinx-Americans (Else-Quest et al., 2013; Seo et al., 2019); however, the findings were less consistent for African-Americans and Asian-Americans. Though Seo and colleagues (2019) reported no gender differences among African-American and AsianAmerican high school students in $11^{\text {th }}$ grade, Else-Quest and colleagues (2013) found gender differences in math ability self-concepts favoring male AfricanAmericans and Asian-Americans throughout high school. The gender differences were larger for Asian-Americans $(d=.41)$ than African-Americans $(d=.16)$ (ElseQuest et al., 2013). More research is needed to address these limited, inconsistent findings.

The importance of replication in psychology

One issue confronting the discipline is that empirical results have often not been replicated (Duncan et al., 2014; Plucker \& Makel, 2021). Replication studies, particularly those that use multiple datasets to check the accuracy and robustness of the effect sizes, are critical but rare (Duncan et al., 2014). Conceptual replication, where researchers use data that includes similar concepts based on divergent methods (e.g., different measures, contexts, participant characteristics), is beneficial for testing whether a theoretical perspective holds up across different cultures or historical time points (Plucker \& Makel, 2021).

Replicating empirical results is imperative to account for potential differences across multiple datasets, e.g., the historical background or participant characteristics. Theorists argue that motivational processes are shaped by these indicators (Eccles \& Wigfield, 2020); however, most studies have explored psychological processes only among European-American, middle-class samples. We see the advantage of using datasets from different historical times. Advantages lay, for example, in
examining possible changes in psychological processes over time (historical changes), using existing datasets for secondary analyses and not always collecting new datasets from over-researched samples, and also the theoretically assumed situative nature of psychological processes in different contexts (see Eccles \& Wigfield, 2020). Even though current datasets have the advantage of providing contemporary results, it is also important to test these processes across historical time. In our study, we aim to use datasets from the 1980 s to 2010 s to test the replication of math gender differences overall and within the four largest U.S. racial/ethnic groups.

The present study

This study is a conceptual replication investigating gender differences in high school students' math competence-related beliefs across six U.S. datasets collected over 30 years. In addition to replicating these gender differences across the six datasets, we designed this study to be a conceptual replication of the Else-Quest et al.'s (2013) study of gender differences (within racial/ethnic groups) in math competence-related beliefs. Though we purposefully used the same analytic methods, namely analysis of variance, our study used prior achievement as a covariate, focused only on students' math competence-related beliefs as the dependent variable, and utilized multiple datasets (see a full comparison of our study to Else-Quest et al. (2013) in the Supplemental Material, Part F).

The goals of our study were to test the extent to which gender differences within each racial/ethnic group replicated across the six datasets included in the current study and replicated the differences found by Else-Quest et al. (2013). Additionally, our goal also was to extend prior research by testing potential historical changes in those differences. The systematic approach of our study will help uncover gender differences and potential variation in those gender differences across and within racial/ethnic groups. Furthermore, this study will provide insight into whether such differences vary as a function of when the data were collected.

The following research questions were examined:
(RQ1) What are the overall gender differences in high school students' competencerelated beliefs in math from $9^{\text {th }}$ to $12^{\text {th }}$ grade? Does the size of gender differences differ systematically across datasets and indicate historical changes?
(RQ2) What are the gender differences in high school students' competence-related beliefs in math from $9^{\text {th }}$ to $12^{\text {th }}$ grade within each racial/ethnic group? Does the size of the gender differences within each racial/ethnic group differ systematically across datasets and indicate historical changes?

Overall, we expected male students to report higher math competence-related beliefs than female students in $9^{\text {th }}$ to $12^{\text {th }}$ grade (Else-Quest et al., 2013; Parker et al., 2020). Despite cultural changes in gender roles, we expected no historical changes in gender differences (Parker et al., 2018; Scherrer \& Preckel, 2019).

Based on prior research, we expected these gender differences to emerge within European- and Latinx-Americans (Else-Quest et al., 2013; Seo et al., 2019). Due to the existing inconsistent findings on gender differences within African- and AsianAmericans (Else-Quest et al., 2013; Seo et al., 2019), we do not have a priori expectations of the gender differences within these groups. We think it is important to acknowledge that by examining students' race/ethnicity as a potential factor of inter-individual differences in motivational beliefs from a social-historical perspective, we do not assume biological differences between races/ethnicities in motivational beliefs (Urdan \& Bruchmann, 2018).

We used multiple background variables as covariates, including prior achievement, parent education, and financial background. In order to understand when gender differences may begin to affect math competence-related beliefs in high school, it is crucial to compare effects controlling for students' background. Thus, we investigated gender differences (within racial/ethnic groups) while holding achievement and family social-economic background constant throughout the analyses (see Chancer \& Watkins, 2006).

METHOD

Utilized data

In this study, we utilized six longitudinal datasets: the California Achievement Motivation Project (CAMP), the Childhood and Beyond Study (CAB), the Maryland Adolescents Development in Context Study (MADICS), the Panel Study of Income Dynamics-Child Development Supplement (PSID-CDS), the Michigan Study of Adolescent and Adult Life Transitions (MSALT), and the High School Longitudinal Study (HSLS). All of these datasets include assessments of math competencerelated beliefs during high school measured with the same or similar items affording tests of conceptual replication (Plucker \& Makel, 2021). These datasets vary in their design, such as the grade levels included, data collection years, the number of cohorts, and participant demographics (see for orientation Figure 1). We utilized all high school data available in each of these datasets. We capitalized on the rich variability across these datasets to examine the extent to which gender differences in students' math competence-related beliefs replicated.

Participants

For all datasets, students were included if they (a) were in high school (9 ${ }^{\text {th }}$ to $12^{\text {th }}$ grade) and had complete data on (b) their race/ethnicity, gender, grade level, family socioeconomic background, parental education, and achievement, and (c) math competence-related beliefs. Across the datasets, the total sample consisted of $24,280^{1}$ students (49.5% male students) with 11% African-, 9% Asian-; 30\% Latinx- and 50\% European-Americans. A subsample of 23,070 students (49.5\% male students) with 11\% African-, 9\% Asian-; 32\% Latinx- and 48\% EuropeanAmericans were used to answer research question 2; data from CAB and MSALT were not include in research question 2 because more than 95% of students in these datasets were European-Americans. Descriptive statistics for each dataset are

[^0]in Supplemental Material, Part A; information on missing data is in Supplemental Material, Part D. Below, we describe the participants in each dataset.

Figure 1
Datasets by survey years and grade level that were used to investigate...

	9th grade	10th grade	11th grade	12th grade
... gender differences across all datasets				
$1988-1990$		MSALT		MSALT
$1994-1996$	CAB	CAB	CAB	CAB
$1996-1997$			MADICS	
$2002-2007$	PSID-CDS	PSID-CDS	PSID-CDS	PSID-CDS
$2004-2006$	CAMP	CAMP	CAMP	CAMP
$2009-2011$	HSLS		HSLS	

... gender differences within European Americans

1996-1997			MADICS	
$2002-2007$	PSID-CDS	PSID-CDS	PSID-CDS	PSID-CDS
$2004-2006$	CAMP	CAMP	CAMP	CAMP
$2009-2011$	HSLS		HSLS	

... gender differences within Asian Americans

$2004-2006$	CAMP	CAMP	CAMP	CAMP
$2009-2011$	HSLS		HSLS	

... gender differences within Latinx Americans

$2004-2006$	CAMP	CAMP	CAMP	CAMP
2009-2011	HSLS		HSLS	

... gender differences within African Americans

1996-1997			MADICS	
2002-2007	PSID-CDS	PSID-CDS	PSID-CDS	PSID-CDS
$2009-2011$	HSLS		HSLS	

MSALT. MSALT is a longitudinal dataset with mostly European-American students from working and middle-class communities in Michigan. Students were surveyed from 1983 to 2000 . For this study, a subsample of 789 students from Wave 5 (1988/89, $10^{\text {th }}$ grade) and Wave 6 (1990, $12^{\text {th }}$ grade) were included (49% male students). We included 402 students from $10^{\text {th }}$ grade and 387 students from $12^{\text {th }}$ grade. Only European-American students were included in this study as students from other races/ethnicities were underrepresented (5\%). The annual income ranged from $\$ 29,999$ or less (29\%) to over $\$ 40,000$ (42\%). Approximately 70% of the parents had at least some college or technical degree.

CAB. CAB primarily included European-American students and their parents from lower-middle to middle-income families in Southeastern Michigan. It is a longitudinal, cohort-sequential study surveying each cohort over several years in school from 1986 to 1999 . For this study, a subsample of 430 students with data collected from 1994 to 1999 were included (47% male students). There were 111 students in $9^{\text {th }}$ grade, 155 in $10^{\text {th }}$ grade, 55 in $11^{\text {th }}$ grade, and 109 in $12^{\text {th }}$ grade. Only European-American students were included in this study as students from other races/ethnicities were underrepresented (5\%). Participating families had an annual income ranging from $\$ 39,999$ or less (7\%) to over \$80,000 (28\%). Approximately 92% of the families had one parent with at least a college degree.

MADICS. MADICS is a longitudinal dataset with mostly African-American (64\%) and European-American (36\%) students from Maryland. Students represented diverse socioeconomic backgrounds and were surveyed between 1991 and 2000. For this study, a subsample of 690 students from Wave 4 (collected in 1996/1997, $11^{\text {th }}$ grade) were included (50% male students). Participating families had an annual income ranging from $\$ 39,999$ or less (25\%) to over $\$ 80,000$ (26\%). Average parental education was 15 years ($S D=2.71$), which is equivalent to some college or a college degree.

PSID-CDS. PSID-CDS is a multi-cohort nationally representative longitudinal dataset of families and their children from 1997 to 2019. For this study, a subsample of 1,264 students was included: cohorts 6-8 in 2002 and cohorts 11-13 in 2007 (50% male students). There were 354 students in $9^{\text {th }}$ grade, 327 in $10^{\text {th }}$ grade, 323 in $11^{\text {th }}$ grade and 260 in $12^{\text {th }}$ grade. Approximately 46% of the sample was African-American and 54\% European-American. The annual family income ranged from $\$ 35,000$ or less (31\%) to over $\$ 95,000$ (29\%). The average parental education was 13.8 years ($S D=2.12$), which is equivalent to some college or a college degree.

CAMP. CAMP is a longitudinal, cohort-sequential dataset of middle and high school students from four school districts in Southern California. Students were surveyed in their math classes over two years, between 2004 and 2006. A subsample of 6,540 students were included (49\% male students; 14\% Asian-Americans, 12\% European-Americans, 74\% Latinx-Americans). There were 2,721 students in $9^{\text {th }}$ grade, 1,742 in $10^{\text {th }}$ grade, 1,563 in $11^{\text {th }}$ grade, and 514 in $12^{\text {th }}$ grade. Among them, 59% of students were eligible for free/reduced lunch (i.e., an indicator for family SES), and 20% of the parents had at least some college or a technical degree.

HSLS. HSLS is a nationally representative longitudinal dataset of high school students in $9^{\text {th }}$ (2009) and $11^{\text {th }}$ grade (2011). For this study, a subsample of 14,570 students from both waves were included (50% male students). We included 6,690 students from $9^{\text {th }}$ grade and 7,880 students from $11^{\text {th }}$ grade. The sample included approximately 10\% African-Americans, 8\% Asian-Americans, 65\% EuropeanAmericans, and 17% Latinx-Americans. The average annual income ranged from $\$ 35,000$ or less (26\%) to over $\$ 95,000$ (31%), and 60% of the parents had at least some college degree.

Instruments

Competence-related beliefs in math. Students' competence-related beliefs were operationalized using students' ability self-concepts in most of the surveys (CAB, MSALT, PSID-CDS, HSLS, MADICS) and self-efficacy in one survey (CAMP). They were assessed once per academic year except for the CAMP dataset, in which they were measured twice within each academic year. To match the measurement points, we averaged the two measures in CAMP during the academic year to get an average score for each grade level.

The authors carried out psychometric analyses in each dataset to examine the properties of all scales. The competence-related belief scales included two to five items, with factor loadings of $.53 \leq \lambda \leq .96$ and internal consistency of $.84 \leq \omega \leq$.94. For MADICS, the Spearman-Brown reliability coefficient was calculated because the scale included only two items (Eisinga et al., 2013). For a full list of items, internal consistency, factor loadings and response scale by dataset, see Supplementary Material, Part B.

In each dataset, measurement invariance analyses across gender, race/ethnicity and for longitudinal studies across time*gender and time*race/ethnicity were conducted to examine if adolescents' math competence-related beliefs had similar measurement properties (Corral \& Landrine, 2010). The models evidenced full configural invariance, full metric invariance, and full or partial scalar invariance for all measures in each dataset (see Supplemental Material, Part C).

Background variables. To obtain information on students' gender and race/ethnicity, we used self-reports (CAB, MADICS, MSALT, HSLS, and PSID-CDS) and district data (CAMP). Below, we describe the covariates. Frequencies of the background variables for each dataset are described in the Supplemental Material, Part A.

Achievement. Students' math achievement is associated with their competencerelated beliefs (Pietsch et al., 2003). Thus, we included an indicator of prior math or general academic achievement. The indicators were (a) district-reported math exam scores (the California Standards Test in CAMP and the Michigan Education Assessment program math test scores in MSALT); (b) standardized test scores (the Woodcock-Johnson Revised Test of Achievement in math in PSID-CDS and algebraic math assessment in HSLS), (c) general grade point average in MADICS and (d) students' general intelligent quotient in CAB.

Parent education. Previous studies indicate that parents' educational background impacts their children's STEM competence-related beliefs (Simpkins, Fredricks \& Eccles, 2015). In the six datasets, parents' education was operationalized using (a) the parents' highest education degree (CAB, CAMP, HSLS, MSALT) or (b) the highest number of years of formal schooling of parents (MADICS, PSID-CDS).

Family financial background. Families' financial background is a factor that influences students' math competence-related beliefs (Parker et al., 2020). The
family financial background was operationalized using information on (a) family income (CAB, HSLS, MSALT, PSID-CDS, MADICS) or (b) student participation in the school lunch program (CAMP).

Statistical analysis

This study aimed to examine gender differences in students' math competencerelated beliefs during high school. In line with previous research, a two-step approach was used to fully investigate gender differences by testing (a) overall gender differences (step 1), and (b) gender differences within each of the four racial/ethnic groups (step 2, see Else-Quest et al., 2013).

It is crucial to test gender differences with and without covariates. This dual approach allowed us to estimate the size of the differences between male and female students' math competence-related beliefs (What are the gender differences in each dataset?) as well as the size of the differences after accounting for important background variables (What are the gender differences with students' demographic background held constant in each dataset?). For simplicity, we describe the results with covariates in this paper. Results without covariates are presented in the Supplemental Material, Part E. We briefly compare the results concerning gender differences without and with covariates in the last section of the Results section.

The datasets varied in methodological characteristics, including sampling methods, sample size, response scales, number of items, and study design. These differences necessitated conducting all analyses separately for each dataset (Hedges \& Vevea, 1998). For instance, all analyses for PSID-CDS and HSLS were adjusted for the complex sampling design (i.e., sampling weights [PSID-CDS, HSLS], primary sampling unit [HSLS], and strata [HSLS]). After all of the analyses were estimated for each dataset, we compared effect sizes weighted by sample size across datasets. We explain the analyses within and across datasets in more detail below.

Analyses within each dataset. We used SPSS version 26 to estimate the ANCOVAs. For HSLS and PSID-CDS, we used the complex samples module. As explained earlier, we tested gender differences through two main steps (step 1: overall gender differences, step 2: gender differences within each racial/ethnic group) with two sub-analyses within each step (analyses without and with covariates). In total, we conducted 17 ANCOVAs estimating overall gender differences and 30 ANCOVAs estimating gender differences within each racial/ethnic group with covariates; we also estimated a parallel set of 47 ANOVAS that did not include covariates. Analysis of variance techniques were utilized so the means of all sub-groups could be compared with each other (Del Río-González et al., 2021). Each dataset included different grade levels (see Figure 1). Thus, the analyses were conducted separately at each grade level in each dataset. We analyzed gender differences with cross-sectional data in each dataset to compare results across datasets. Because most of the datasets included longitudinal data in high school (except MADICS), we used SPSS to randomly assign students to one grade level. Thus, data from each student was included only once at a randomly assigned grade level, meeting the analysis of variance assumption for independence. The
participant descriptions presented earlier in the Method section took this random selection into account.

Effect sizes (Hedges' g) at each grade level in each dataset were used to calculate the combined (weighted average) effect size of the gender differences. Hedges' g corrects for biases associated with small sample sizes (Hedges \& Olkin, 1985). For effect sizes, it is mandatory to interpret the results concerning the topic of interest, the data and project design, and the study aims (see Bakker et al., 2019). Guided by previous research (Else-Quest et al., 2010; Parker et al., 2018), we refer to meaningful gender effects with effect sizes $g \geq .15$. However, we do not use these as strict cut-offs (e.g., effect sizes of .14 and .15 both were interpreted as meaningful). Furthermore, because different Likert scales were used across datasets (1-7 [MSALT, CAB, MADICS, PSID-CDS]; 1-5 [CAMP]; 1-4 [HSLS]), we used the transformation of mean scores via Percent of Maximum Possible (POMP) score to descriptively compare means across datasets (Cohen et al., 1999). The POMP score transforms different Likert scales on one common scale from 0 (minimum) to 100 (maximum) using the following formula: POMP = [(observed score - minimum possible score)/(maximum possible score - minimum possible score)] $\times 100$.

Analyses across datasets. After estimating gender differences (overall and within each racial/ethnic group) in each dataset, we tested the heterogeneity of the effects across datasets using Comprehensive Meta-Analysis version 3.3 (CMA, Borenstein et al., 2010). We estimated fixed and random effects and compared both models using the conventional heterogeneity tests in meta-analyses based on Q statistics and the I^{2} (see Hedges \& Schauer, 2019). The fixed effect model assumes the homogeneity of effects, while the random effects model assumes the heterogeneity of effects. Thus, Q-statistics test the null hypothesis of no meaningful differences in the effect sizes across the included studies (Hedges \& Schauer, 2019).

RESULTS

This section reports results on gender differences overall (RQ1) and gender differences within each racial/ethnic group (RQ2). In each section, we describe the effect sizes at each grade level across the datasets. Afterward, we report results on the heterogeneity of the gender differences across datasets. Several datasets from different historical times were used and, thus, allowed us to test the heterogeneity of gender differences to address historical differences.

For simplicity, we focus on results with covariates. Results comparing gender differences without and with covariates are briefly mentioned at the end of this section (see supplementary material for results without covariates).

Gender differences overall (RQ1)

Descriptive information on students' math competence-related beliefs by grade level and by gender is presented in Table 1. All reported effect sizes in this section refer to the combined effects calculated across datasets. Results of the ANCOVAs

Table 1
Descriptive statistics of gender differences in competence-related beliefs across grade levels and datasets

Notes. ${ }^{\text {a }}$ Order of datasets according to age from youngest (top) to oldest dataset (bottom); POMP = Percent of Maximum Possible score.
${ }^{\mathrm{b}}$ Source: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.
with effect sizes computed for each dataset as well as indicators of the heterogeneity of these effects across datasets are represented in Tables 2 and 3. Patterns of gender differences for students' math competence-related beliefs are plotted in Figure 2.

Figure 2

Gender effects and grade-specific weighted effect sizes (combined effects) from 9th to 12th grade

Notes. Reported results included student achievement, family financial background, and parent education as covariates; Source HSLS: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

At all grade levels, meaningful gender differences emerged that favored boys after controlling for covariates (. $14 \leq \bar{g} \leq .23$; Tables 2 and 3). However, the combined gender effects at $9^{\text {th }}$ and $11^{\text {th }}$ grade were weak with $\bar{g}=.14$. The combined effects at $10^{\text {th }}$ and $12^{\text {th }}$ grade were small with $\bar{g}=.22$ and $\bar{g}=.23$. The heterogeneity tests indicated that there was some variation in the effect sizes across datasets at $9^{\text {th }}$ grade but not at $10^{\text {th }}$ through $12^{\text {th }}$ grade (see the Q-statistics in Tables $2 \& 3$). As shown in Figure 2, the variability in the effect sizes at $9^{\text {th }}$ grade was not related to the survey year of the dataset. Thus, there was no evidence that gender differences varied based on the year data were collected.

Table 2
Effects of gender differences, combined effects and results on the heterogeneity of effects in 9th and 10th grade

Notes. Order of datasets according to age from youngest (top) to oldest dataset (bottom); S.E. = standard error. CI = confidence interval; ${ }^{\text {a }}=$ refers to the fixed effect model based on the non-significance of the Q -statistic, ${ }^{\mathrm{b}}=$ refers to the random effect model based on the significance of the Q-statistic; $Q=$ tests fixed effect model against random effect model, i.e., null hypothesis is that effect sizes are similar across datasets, which corresponds to the fixed effect model; $I^{2}=$ indicates the percentage of variance of real differences in effect sizes; reported results included students' achievement, family financial background, and parent education as covariates. ${ }^{\text {b }}$ SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Table 3

Effects of gender differences, combined effects and results on the heterogeneity of effects in 11th and 12th grade

	$11^{\text {th }} \mathrm{grad}$					${ }^{2 \text { th }} \mathrm{grad}$					
	F	$d f$	p	gS.E.	95 \% CI	F	df	p	g	E.	\% CI
MSALT	--					3.81	1,382	. 05	. 16	. 10	-.04; . 36
CAB	1.56	1, 50	. 22	. 35.28	-.19; . 89	0.76	1, 104	. 39	. 17	. 19	-.21; . 55
MADICS	11.04	1,685	. 001	. 26.08	.11; . 41	--					
PSID-CDS	2.75	1, 311	. 10	. 19.11	-.03; . 41	2.66	1,248	. 10	. 21	. 13	-.03; . 46
CAMP	22.60	1,1558	<. 001	. 24.05	.14; . 34	12.44	1,509	<. 001	. 31	. 09	.14; . 49
HSLS ${ }^{\text {b }}$	28.72	1,480	<. 001	. 11.02	.07; . 15	--					
Combined effect Heterogeneity		$Q=9.05, d f=4, p=.06 ; I^{2}=55.79$				$Q=1.40, d f=3, p=.71 ; I^{2}=0.00$					

Notes. See Table 2.

Gender differences within each racial/ethnic group (RQ2)

Descriptive information on students' math competence-related beliefs by grade level, and by gender and race/ethnicity is presented in Table 4. Reported effect sizes in this section refer to either the combined effects calculated across datasets or effect sizes that result only from one dataset; combined effects could not be calculated at certain grade levels for Latinx-, Asian-, and African-Americans because only one dataset included that racial/ethnic group at some grade levels (e.g., data for Latinx $10^{\text {th }}$ graders were only available in CAMP; see Figure 1). Results of ANCOVAs with effect sizes computed for each dataset as well as indicators of the heterogeneity of these effects across datasets are represented in Tables 5 and 6 . In alphabetical order, we report gender differences for African-, Asian-, European- and Latinx-Americans.

Figure 3
Gender effects and grade-specific weighted effect sizes (combined effects) for AfricanAmericans from 9th to 12th grade

Notes. Reported results included student achievement, family financial background, and parent education as covariates; Source HSLS: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Gender differences for African-Americans. The gender differences for students' math competence-related beliefs controlling for covariates within African-Americans are plotted in Figure 3. We report the combined effect size (\bar{g}) for African-Americans at $9^{\text {th }}$ and $11^{\text {th }}$ grade and the effect size (g) from one dataset at $10^{\text {th }}$ and $12^{\text {th }}$ grade (Tables 5 and 6). At $9^{\text {th }}$ to $11^{\text {th }}$ grade, no meaningful gender differences emerged ($9^{\text {th }}$:

Table 4
Descriptive statistics of math competence-related beliefs by gender and race/ethnicity across datasets

Latinx-Americans 9		HSLS ${ }^{\text {b }}$	$1-4$	560	2.91	1.60	2.77	3.04	63.59	590	2.71	0.78	2.65	2.78
	CAMP	$1-5$	996	3.31	0.79	3.26	3.36	57.80	1100	3.14	0.80	3.09	3.18	53.40
10	CAMP	$1-5$	640	3.32	0.78	3.26	3.38	58.08	657	3.10	0.79	3.04	3.16	52.58
11	HSLS	$1-4$	690	2.66	1.45	2.56	2.77	55.48	690	2.50	1.38	2.40	2.61	50.12
	CAMP	$1-5$	525	3.33	0.79	3.26	3.39	58.18	598	3.15	0.78	3.09	3.21	53.75
12	CAMP	$1-5$	186	3.36	0.74	3.36	3.47	59.08	169	3.23	0.74	3.12	3.34	55.73

Notes. ${ }^{\text {a }}$ Order of datasets according to age from youngest (top) to oldest dataset (bottom); POMP = Percent of Maximum Possible score. ${ }^{\text {b }}$ Source: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.
$\left.\bar{g}=.00 ; 10^{\text {th }}: g=-.12 ; 11^{\text {th }}: \bar{g}=.10\right)$. At $12^{\text {th }}$ grade, the effect sizes indicated meaningful gender differences ($\mathrm{g}=-.15$) that favored girls. The test for heterogeneity could be calculated at $9^{\text {th }}$ and $11^{\text {th }}$ grade; the findings suggest that the size of the gender differences was similar across datasets at each grade level (see the Q-statistics in Tables 5 and 6). Thus, there was no evidence that gender differences varied across datasets for African-Americans at $9^{\text {th }}$ or $11^{\text {th }}$ grade.

Gender differences for Asian-Americans. The gender differences for students' math competence-related beliefs within Asian-Americans with covariates are plotted in Figure 4. We report the combined effect size (\bar{g}) for Asian-Americans at $9^{\text {th }}$ and $11^{\text {th }}$ grade and the effect size (g) from one dataset at $10^{\text {th }}$ and $12^{\text {th }}$ grade. At every grade level, meaningful gender differences emerged that always favored boys ($9^{\text {th }}: \bar{g}=.39$; $10^{\text {th }}: \mathrm{g}=.38 ; 11^{\text {th }}: \bar{g}=.19 ; 12^{\text {th }}: \mathrm{g}=.62$). The test for heterogeneity could be computed at $9^{\text {th }}$ and $11^{\text {th }}$ grade and indicated that the size of the gender differences was similar across datasets at each grade level (see the Q-statistics in Tables 5 and 6). Thus, there was no evidence that gender differences varied across datasets for Asian-Americans at $9^{\text {th }}$ or $11^{\text {th }}$ grade.

Figure 4
Gender effects and grade-specific weighted effect sizes (combined effects) for AsianAmericans from 9th to 12th grade

Notes. Reported results included student achievement, family financial background, and parent education as covariates; Source HSLS: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Table 5

Effects of gender differences, combined effects and results on the heterogeneity of effects in 9th and 10th grade within ethnicities/races

	$9^{\text {th }}$ grade						$10^{\text {th }}$ grade					
	F	$d f$	p	g	S.E.	95\% CI	F	$d f$	p	g	S.E.	95\% CI
African-Americans												
HSLS	0.01	1, 100	. 92	. 02	. 08	-.13; . 17	--					
PSID-CDS	0.12	1, 148	. 73	-. 06	. 16	-.38; . 36	0.50	1, 152	. 48	-. 12	. 16	-.44; . 19
Combined effect				.00 ${ }^{\text {a }}$. 07	-. 14; . 14						
Heterogeneity			0.17,	$d f=1$,	$p=.6$, $I^{2}=0.00$	--					
Asian-Americans												
HSLS	27.59	1,50	<. 001	. 47	. 09	.30; . 64	--					
CAMP	5.65	1,310	. 02	. 27	. 11	.05; . 49	7.86	1,223	<. 001	. 38	. 13	.11; . 64
Combined effect				. $39^{\text {a }}$. 07	.26; . 53						
Heterogeneity			1.86,	$f=1, p$	$=.17$	$I^{2}=46.37$						
European-Americans												
HSLS	31.27	1,400	<. 001	. 17	. 03	.11; . 23	--					
CAMP	3.33	1, 305	. 07	. 20	. 11	-.02; . 42	2.13	1, 211	. 15	. 20	. 14	-.07; . 47
PSID-CDS	0.32	1, 194	. 57	. 08	. 14	-.19; . 36	1.14	1,167	. 17	. 15	. 15	-.13; . 47
Combined effect				. $17^{\text {a }}$. 03	.11; . 23				.19a	. 10	-.01; . 39
Heterogeneity			= .45,	df = 2,	$p=.8$, $I^{2}=0.00$			$=0.02, d$	$f=1$,	$=.89$	$I^{2}=0.00$
Latinx-Americans												
HSLS	6.14	1, 150	. 01	. 16	. 06	.05; . 28	--					
CAMP	26.63	1, 2091	<. 001	. 21	. 04	.13; . 30	25.04	1, 1292	<. 001	. 28	. 06	.17; . 39
Combined effect				. $20^{\text {a }}$. 04	.13; . 26						
Heterogeneity			$=.52$,	$d f=1$,	$p=.4$	$7, I^{2}=0.00$						

Table 6

Effects of gender differences, combined effects and results on the heterogeneity of effects in 11th and 12th grade within race/ethnicity

Notes. See Table 2.

Gender differences for European-Americans. The gender differences for students' math competence-related beliefs within European-Americans with covariates are plotted in Figure 5. We report the combined effect size (\bar{g}) for European-Americans at all grade levels. At every grade level, meaningful gender differences emerged that always favored boys (.17 $\bar{g} \leq .44$). The test for heterogeneity was computed at each grade level and indicated that the size of the gender differences among European-Americans was similar across datasets from $9^{\text {th }}$ to $12^{\text {th }}$ grade (see the Q-statistics in Tables 5 and 6). Thus, there was no evidence that gender effects varied across datasets for European-Americans.

Figure 5
Gender effects and grade-specific weighted effect sizes (combined effects) for European-Americans from $9^{\text {th }}$ to $12^{\text {th }}$ grade

Notes. Reported results included student achievement, family financial background, and parent education as covariates; Source HSLS: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Gender differences for Latinx-Americans. The gender differences for students' math competence-related beliefs within Latinx-Americans with covariates are plotted in Figure 6. We report the combined effect size (\bar{g}) for Latinx-Americans at $9^{\text {th }}$ and $11^{\text {th }}$ grade and the effect size (g) from one dataset at $10^{\text {th }}$ and $12^{\text {th }}$ grade. At every grade level, meaningful gender differences emerged that always favored boys ($9^{\text {th }}: \bar{g}=.20 ; 10^{\text {th }}: \mathrm{g}=.28 ; 11^{\text {th }}: \bar{g}=.17 ; 12^{\text {th }}: \mathrm{g}=.18$). The test for heterogeneity could be tested at $9^{\text {th }}$ and $11^{\text {th }}$ grade; the findings indicated that the size of the gender differences was similar across datasets at $9^{\text {th }}$ and $11^{\text {th }}$ grade (see
the Q-statistics in Tables 5 and 6). Thus, there was no evidence that gender effects varied across datasets for Latinx-Americans.

Figure 6
Gender effects and grade-specific weighted effect sizes (combined effects) for Latinx-Americans from 9th to 12th grade

Notes. Reported results included student achievement, family financial background, and parent education as covariates; Source HSLS: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Results on gender differences without covariates

The analyses testing gender differences without covariates (overall and within each racial/ethnic group) are reported in the Supplemental Material, Part E. We would like to point out two findings, which became evident in the comparison of gender differences within racial/ethnic groups without and with covariates.

First, for African-Americans, the combined effects were slightly stronger when parceling out the control variables than when the control variables were not included ($-.06 \leq \bar{g} \leq .18$). Specifically, the gender differences were not significant when we did not include the covariates. Second, the heterogeneity of effects across datasets was larger when we did not include the covariates, i.e., across races/ethnicities (RQ1) and Asian-Americans (RQ2). This pattern suggests that the
comparability of effect sizes between datasets is better achieved after controlling for the covariates.

DISCUSSION

Gender, race, and ethnicity have been found to explain variation in students' motivational beliefs across K-12 grades (Zusho \& Kumar, 2018). The resulting inter-individual differences are particularly profound in STEM (Else-Quest et al., 2013; Parker et al., 2018; Parker et al., 2020). This study investigated the gender differences in math competence-related beliefs among African-, Asian-, European-, and Latinx-American students from $9^{\text {th }}$ to $12^{\text {th }}$ grade, and also across six datasets between the 1980s and 2010s to test if these findings replicate across historical time.

Replication of gender differences overall

Supporting our hypothesis, we found that male students had higher math competence-related beliefs than female students in high school. This pattern was consistent from $9^{\text {th }}$ to $12^{\text {th }}$ grade across datasets though the gender differences were weak at $9^{\text {th }}$ and $11^{\text {th }}$ grade with effect sizes of $\bar{g}=.14$. The direction and size of these gender differences align with prior work by Else-Quest and colleagues (2013) and other studies that sampled high school students from the 1980s to 2010s (Graham \& Morales-Chicas, 2015; Nagy et al., 2010; Parker et al., 2020; Watt et al., 2012). These results need to be interpreted in the context of gender equality in students' math achievement (see McGraw et al., 2006). Explanations for persistent gender differences in students' competence-related beliefs despite equality in math achievement are that boys and girls are exposed to differing socialization experiences (e.g., interactions with parents, friends, and teachers) that can inform their perceptions of their competencies. Research on gender roles indicates that gender-role stereotypes and beliefs (e.g., male students are good at math, value money, and working with tools; female students value helping others) influence parents' opinions of their children's competence to perform various activities (Eccles et al., 1990). Simpkins and colleagues (2015) found that parents' beliefs about their children's competence and the extent to which parents provide support is influenced by their children's gender, and is expected to shape children's motivational beliefs.

Replication of gender differences within racial/ethnic groups

Prior research findings on gender differences within different racial/ethnic populations are limited and mixed, with some reporting gender differences and others finding no differences (Else-Quest et al., 2013; Seo et al., 2019). Supporting our hypothesis and replicating findings from Else-Quest et al. (2013), we identified gender differences in math competence-related beliefs favoring male students among European- and Latinx-Americans that replicated across datasets and all high school grades. These observed gender differences within European- and LatinxAmericans are consistent with previous research (Else-Quest \& Hyde, 2016; Seo et al., 2019) and the overall trend of gender differences in this study favoring male students. We also found gender differences favoring male students among AsianAmericans that support previous work from Else-Quest and colleagues (2013) and the overall trend found in this study. Thus, we replicated that gender differences
emerged only for certain racial/ethnic groups in high school (i.e., European-, Latinx-, and Asian-American) and always favored boys in these groups.

Our findings for Asian-Americans add to theoretical assumptions on math stereotypes. We know about stereotypes of high expectations of math achievement for both male and female Asian-Americans. A combination of scholarship on stereotype threat in math (e.g., Steele, 2013) and model minority stereotypes (Trytten et al., 2012) suggest that gender gaps might be smaller for AsianAmericans. However, our results, along with prior empirical studies by Else-Quest et al. (2013), point to gender differences among Asian Americans that favor boys with large effect sizes. Cumulatively, it is possible that Asian-American students have higher competence beliefs in math compared to other racial/ethnic groups as suggested by multiple theories, but this group also exhibits large gender differences as suggested by empirical evidence. It is also possible that gender differences might be more pronounced among students who exhibit high math competence or high math competence beliefs, though this needs to be systematically tested (see Baye \& Monseur, 2016). Studies are needed on how psychological processes and societal beliefs, such as stereotypes, are related to gender differences within racial/ethnic groups.

The findings for African-Americans differed from the overall trends and the three other racial/ethnic groups. Specifically, male and female African-American students did not differ in their math competence-related beliefs from $9^{\text {th }}$ to $11^{\text {th }}$ grade $-a$ finding that replicated across studies. Though these non-significant differences align with findings from Seo and colleagues (2019), it varies from results by Else-Quest and colleagues (2013) and differs from our overall trend of gender differences favoring male students. One possible explanation is that, compared to EuropeanAmerican youth and their families, African-American youth and their families are less likely to endorse stereotypes privileging boys in math and/or may hold higher academic expectations for their daughters (Evans et al., 2011; Rowley et al., 2007; Skinner et al., 2021; Wood et al., 2010). By communicating high academic expectations for their daughters and disavowing traditional math gender stereotypes, African-American parents may set their daughters up to have similar math competence-related beliefs as their male peers. Another reason for different results than Else-Quest et al. (2013) might be that we controlled for prior achievement. Thus, we exclude variance of math competence-related beliefs that is explained by prior achievement. It might be that we did not find gender differences for African-Americans controlling for achievement, because achievement might be a more crucial predictor of students' competence-related beliefs for African-Americans in high school than gender.

In addition, we also found gender differences favoring female students over male students in $12^{\text {th }}$ grade for African-Americans; this result contradicts our study finding of gender differences favoring male students in 12th grade overall. The finding on gender differences favoring African-American female students in $12^{\text {th }}$ grade should be interpreted cautiously as these observed differences were limited to only one dataset (PSID-CDS). But, the findings complement other research indicating that female minority students persist further in math (Safavian, 2019)
and male African-American students experience more discrimination than their peers (Feliciano, 2012). However, it is important to note that the findings for African-American students often were different than the overall trends in this study and work by Else-Quest et al. (2013). Thus, more research among AfricanAmerican populations is warranted to better understand how findings on gender equality in math competence-related beliefs might reflect the empowerment of female students in STEM or structural and systemic barriers in STEM for male students. In general, more research of this kind is needed to examine trends across grades. It might be important to investigate why gender differences occurred for Asian-, European- and Latinx-Americans but not African-Americans in $9^{\text {th }}$ to $11^{\text {th }}$ grade.

Historical changes in gender differences

Supporting our hypotheses, we found no evidence of historical changes concerning gender differences in students' math competence-related beliefs using six U.S. datasets from the 1980s to the 2010s. Our results align with prior findings in metaanalyses indicating no effect of the publication year or data collection year on students' motivational beliefs, motivational development, and relevant gender effects (Parker et al., 2018; Scherrer \& Preckel, 2019).

Our findings make two significant contributions. First, researchers have debated the situative nature of students' motivational development (Eccles \& Wigfield, 2020), as systemic changes in society and policy might influence motivational beliefs and gender disparities. Over the last few decades, several initiatives have been launched to increase gender equality in terms of college degrees in STEM majors, raise the recruitment and retention of women in STEM, and counteract the achievement gap (see NASEM, 2020; NCSES, 2021). There also have been multiple meaningful interventions that support marginalized students (e.g., teacher-level interventions, interventions on creating inclusive environments, student-level interventions), some of which have had positive impacts on students' motivational beliefs in STEM (for reviews of these interventions, see Lee et al., 2021; Levene \& Pantoja, 2021; Rosenzweig \& Wigfield, 2016).

We asked whether the patterns of gender differences in students' motivational beliefs might differ across historical contexts. Our study demonstrates that gender differences in math competence-related beliefs of high school students were stable across datasets from the 1980s to the 2010s. Our finding is quite important given the amount of effort that has been devoted to reducing or eliminating gender differences in STEM over the last several decades. However, there is an important nuance we need to note. We did not test the effectiveness of interventions aimed to counteract gender differences over time, but used datasets of different historical times to examine gender differences in math competence-related beliefs.

Stable gender differences across the last several decades could be explained by the fact that some of the interventions aiming to reduce gender disparities are comparatively recent, smaller in scale and thus are not reflected in the data used in the study. Moreover, any type of intervention, whether student-centered, fostering students' attitudes towards STEM, or more general policy-related initiatives aimed
to create inclusive environments for women in STEM, will need to be implemented widely to create fundamental change in the broader population. Particularly student-centered interventions aimed at improving students' perception of their own capabilities in STEM showing short-term success so far, have not been implemented widely until very recently (Bailey et al., 2020). Ultimately, some of the more systemic changes happening in the most recent decades are likely to take time to take effect and would not have shown up in the data used in the current study. More importantly, the development of competence-related beliefs is a highly complex process that is influenced by many different factors, including but not limited to experiences in educational settings as well as their interactions with family members, friends and the expectations and norms they communicate. In addition, societal norms are communicated through media that adolescents engage with on a daily basis. Just changing one of these influences might not be sufficient to create long-term change.

Ultimately, STEM education is biased and has led to decades of unequal opportunities for those who are marginalized, such as women and Latinx-Americans (Honey et al., 2020). Our study provides important information regarding the historical stability of gender differences in adolescents overall. However, we were more limited in our ability to investigate historical changes of gender differences within each racial/ethnic group (e.g., the three datasets with information on African-Americans span 15 years from 1996 to 2011). We encourage future research to examine historical changes in gender differences among multiple racial/ethnic groups using datasets from multiple historical decades.

Limitations and future directions

Though these findings make several contributions, the limitations must be considered. First, the current study investigated mean-level differences in math competence-related beliefs across datasets and racial/ethnic groups. We, however, do not want to create a misperception that these racial/ethnic groups are monolithic (Urdan \& Bruchmann, 2018). Assessing race/ethnicity and gender using categorical variables simplifies the complexity of culture and ethnicity/race and negates the existing rich variability within each group (Zusho \& Kumar, 2018). Future research should explore the potential variation that exists within each of the investigated subgroups (for example, Hsieh et al., 2021).

Second, given that the current study used existing datasets, the measures were not identical across all studies (CAMP: self-efficacy; all other datasets: ability selfconcept). Similar to the approach used in meta-analyses (see Parker et al., 2020), however, the focus of the current study was the comparison at the construct level, which is a test of conceptual replication. Research has shown that self-efficacy and self-concept measures are highly similar and not indistinguishable empirically at times (Wigfield \& Eccles, 2002).

Third, we excluded all cases with missing data (listwise deletion). This was done because we used analysis of variance and a meta-analytic approach to compare mean-level differences across multiple datasets. One challenge with analysis of variance is handling missing data. Though multiple imputation is one way of dealing
with missing data, it does not work well with the analysis of variance techniques (see Graham, 2012; Finch, 2016). However, scholars have shown that the results obtained with analysis of variance and listwise deletion are close to the results found with other ways of handling missing data (see Grund et al., 2016). We, therefore, excluded cases with missing data though it is possible that this decision might lead to biased results as excluded cases were different than included cases in some datasets (see Supplemental Material, Part D). We would like to highlight that we replicated our findings across 6 U.S. datasets that are in line with other results based on regression analyses that estimated missing data (see Arens et al., 2017, Marsh et al., 2021), which would suggest that our findings are less likely to be fundamentally biased.

Also, our paper conceptualizes gender as either identifying as female or male because the utilized datasets measured gender as a female/male binary. However, gender is more complex. Future research might include other gender identities (such as non-binary and other transgender identities) as well as include more detailed measures to capture the multiple facets of gender identity, such as centrality and felt typicality (Tobin et al., 2010).

We envision two further directions for this line of research. First, given the interplay of expectancy and value beliefs, it is worthwhile to study historical trends in gender differences in math subjective task values. Throughout history, society's projected needs have had implications for the agendas of our social institutions, economic growth, and technological advancements. Gender role attitudes are shifting in tandem with changes in historical context. This also impacts messages about what vocations are important, and hence directs what subjects of study will be relevant in the future in terms of labor force and social importance. These broad values shape what gender groups consider to be worthwhile investments of their resources. This also inevitably impacts the implicit and explicit messaging that children receive and internalize regarding the importance and utility of math, as well as molding their experiences and engagement with math through the provision of activities, experiences, and resources.

Second, our study included parent education and financial background as covariates. However, we know about the intersection of gender, race/ethnicity, and socioeconomic background (class) (see Chancer \& Watkins, 2006). As seen in our paper, gender differences in math competence-related beliefs were found for European-, Asian-, and Latinx-American students, but not for African-American students. Such patterns have also been found for performance in STEM subjects (McGraw et al., 2006). Building on these findings, other research found that these gender differences were more pronounced for students from lower socioeconomic backgrounds (Entwisle et al., 2007). This relationship could also apply to competence-related beliefs. One challenge when testing replication of the intersection of these factors is the difference of the operationalization of socioeconomic background and class across datasets. However, future research can consider a way to account for socioeconomic background as a predictor that is interrelated with gender and race/ethnicity.

Conclusion

In sum, our findings have several implications. This study adds empirical value given the relevance of using an intersectional lens to more accurately capture the inter-individual differences in our increasingly diverse society (Urdan \& Bruchmann, 2018). For instance, we found gender differences in high school students' math competence-related beliefs among Asian-, European- and Latinx-Americans but not in African-Americans. Therefore, one empirical implication is that future studies need to take both gender and race/ethnicity into account when aiming to understand students' STEM motivational beliefs. Furthermore, aligned with the recommendations by Plucker and Makel (2021), we highlight the importance of replication in motivational psychology. We demonstrate the need for scholars to (a) use multiple datasets to replicate findings and identify potential differences in the patterns, and (b) use datasets from different decades to understand the historical changes in motivational processes.

AUTHOR NOTE

Charlott Rubach	https://orcid.org/0000-0003-0451-6429
Glona Lee	https://orcid.org/0000-0003-4585-3456
Christine R. Starr	https://orcid.org/0000-0002-8662-0387
Yannan Gao	https://orcid.org/0000-0003-3949-5488
Nayssan Safavian	https://orcid.org/0000-0001-7765-2363
Anna-Lena Dicke	https://orcid.org/0000-0001-8816-455X
Jacquelynne S. Eccles	https://orcid.org/0000-0002-6405-9330
Sandra D. Simpkins	https://orcid.org/0000-0002-6053-4827

We have no conflict of interest to disclose. This work was supported by two National Science Foundation grants (EHR-1760757 \& EHR-2054956) to Sandra Simpkins \& Jacquelynne Eccles. Additionally, multiple grants supported collecting and sustaining three of the datasets (CAB, MADICS, and MSALT) that this paper employs: two NSF grants to Jacquelynne Eccles (BNS 85-10504) and Jacquelynne Eccles and Pamela Davis-Kean (0089972), two grants from the National Institute for Child Health and Human Development to Jacquelynne Eccles (HD17296) and Jacquelynne Eccles, Allan Wigfield, Phyllis Blumenfeld, and Rena Harold (HD17553), two grants from the MacArthur Network, a grant from the National Institute for Mental Health (MH31724), and a grant from the W.T. Grant Foundation, each awarded to Jacquelynne Eccles. Finally, two National Science Foundation grants also supported the collecting and sustaining of the CAMP dataset to Jacquelynne S . Eccles, Nayssan Safavian, and Stuart Karabenick (HRD-1535273), and Martin Maehr and Stuart Karabenick (DRL-0335369). We thank the principals, teachers, students, and parents of the cooperating school districts for their participation in these projects.

International Journal of Gender, Science and Technology, Vol.14, No. 2

REFERENCES

Alfaro, E. C., Umaña-Taylor, A. J., Gonzales-Backen, M. A., Bámaca, M. Y., \& Zeiders, K. H. (2009). Latino adolescents' academic success: The role of discrimination, academic motivation, and gender. Journal of Adolescence, 32(4), 941-962. https://doi.org/10.1016/j.adolescence.2008.08.007
Arens, A. K., Marsh, H. W., Pekrun, R., Lichtenfeld, S., Murayama, K., \& Vom Hofe, R. (2017). Math self-concept, grades, and achievement test scores: Longterm reciprocal effects across five waves and three achievement tracks. Journal of Educational Psychology, 109(5), 621.https://doi.org/10.1037/edu0000163

Archer, L., DeWitt, J., \& Osborne, J. (2015). Is science for us? Black students' and parents' views of science and science careers. Science Education, 99(2), 199237. https://doi.org/10.1002/sce. 21146

Aschbacher, P. R., Li, E., \& Roth, E. J. (2010). Is science me? High school students' identities, participation and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47(5), 564-582. https://doi.org/10.1002/tea. 20353
Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman.
Bailey, D. H., Duncan, G. J., Cunha, F., Foorman, B. R., \& Yeager, D. S. (2020). Persistence and fade-out of educational-intervention effects: Mechanisms and potential solutions. Psychological Science in the Public Interest, 21(2), 55-97. https://doi.org/10.1177/1529100620915848
Baye, A., \& Monseur, C. (2016). Gender differences in variability and extreme scores in an international context. Large-scale Assessments in Education, 4(1), 1-16. https://doi.org/10.1186/s40536-015-0015-x
Bong, M., \& Skaalvik, E. M. (2003). Academic self-concept and self-efficacy: How different are they really?. Educational Psychology Review, 15(1), 1-40. https://doi.org/10.1023/A:1021302408382
Borenstein, M., Hedges, L. V., Higgins, J. P. T., \& Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97-111. https://doi.org/10.1002/jrsm. 12
Botella, C., Rueda, S., López-Iñesta, E., \& Marzal, P. (2019). Gender diversity in stem disciplines: A multiple factor problem. Entropy, 21(1), 30. https://doi.org/10.3390/e21010030
Breda, T., Jouini, E., Napp, C., \& Thebault, G. (2020). Gender stereotypes can explain the gender-equality paradox. Proceedings of the National Academy of Sciences of the United States of America, 117(49), 31063-31069. https://doi.org/10.1073/pnas.2008704117
Bruning, M.J., Bystydzienski, J., \& Eisenhart, M. (2015). Intersectionality as a framework for understanding diverse young women's commitment to engineering. Journal of Women and Minorities in Science and Engineering, 21(1), 1-26. https://doi.org/10.1615/JWomenMinorScienEng. 2014007345
Cheryan, S., Lombard, E. J., Hudson, L., Louis, K., Plaut, V. C., \& Murphy, M. C. (2020). Double isolation: Identity expression threat predicts greater gender disparities in computer science. Self and Identity, 19(4), 412-434. https://doi.org/10.1080/15298868.2019.1609576

Cohen, P., Cohen, J., Aiken, L. S., \& West, S. G. (1999). The problem of units and the circumstance for POMP. Multivariate Behavioral Research, 34(3), 315346. https://doi.org/10.1207/S15327906MBR3403_2

Crenshaw, K. (2019). 'Difference' through intersectionality. In S. Arya \& A. S. Rathore (Eds.), Dalit feminist theory: A reader (pp. 139-149). Routledge. https://doi.org/10.4324/9780429298110-15
Deci, E. L., \& Ryan, R. M. (1985). The general causality orientations scale: Selfdetermination in personality. Journal of Research in Personality, 19(2), 109134. https://doi.org/10.1016/0092-6566(85)90023-6

Del Río-González, A. M., Holt, S. L., \& Bowleg, L. (2021). powering and structuring intersectionality: Beyond main and interactive associations. Research on Child and Adolescent Psychopathology, 49(1), 33-37. https://doi.org/10.1007/s10802-020-00720-w
Duncan, G. J., Engel, M., Claessens, A., \& Dowsett, C. J. (2014). Replication and robustness in developmental research. Developmental Psychology, 50(11), 2417-2425. https://doi.org/10.1037/a0037996
Eccles, J. S., \& Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. Contemporary Educational Psychology, 61, 101859. https://doi.org/10.1016/j.cedpsych.2020.101859

Else-Quest, N. M., \& Hyde, J. S. (2016). The authors respond: Continuing the dialectic on intersectionality in psychology. Psychology of Women Quarterly, 40(3), 351-352. https://doi.org/10.1177/0361684316655757
Else-Quest, N. M., Hyde, J. S., \& Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychological Bulletin, 136(1), 103-127. https://doi.org/10.1037/a0018053
Else-Quest, N. M., Mineo, C. C., \& Higgins, A. (2013). Math and science attitudes and achievement at the intersection of gender and ethnicity. Psychology of Women Quarterly, 37(3), 293-309. https://doi.org/10.1177/0361684313480694
Evans, A. B., Copping, K. E., Rowley, S. J., \& Kurtz-Costes, B. (2011). Academic self-concept in Black adolescents: Do race and gender stereotypes matter? Self and Identity, 10(2), 263-277. https://doi.org/10.1080/15298868.2010.485358
Feliciano, C. (2012). The female educational advantage among adolescent children of immigrants. Youth \& Society, 44(3), 431-449. https://doi.org/10.1177/0044118X11404441
Fredricks, J. A., \& Eccles, J. S. (2002). Children's competence and value beliefs from childhood through adolescence: Growth trajectories in two male-sextyped domains. Developmental Psychology, 38(4), 519-533. https://doi.org/10.1037/0012-1649.38.4.519
Graham, S., \& Morales-Chicas, J. (2015). The ethnic context and attitudes toward 9th grade math. International Journal of Educational Psychology, 4(1), 1-32.
Grund, S., Lüdtke, O., \& Robitzsch, A. (2016). Pooling ANOVA results from multiply imputed datasets: A simulation study. Methodology, 12, 75-88. https://doi.org/10.1027/1614-2241/a000111
Häussler, P., \& Hoffmann, L. (2002). An intervention study to enhance girls' interest, self-concept, and achievement in physics classes. Journal of

Research in Science Teaching, 39(9), 870-888. https://doi.org/10.1002/tea. 10048
Hedges, L. V., \& Olkin, I. (1985). Statistical Method for Meta-Analysis. Academic Press.
Hedges, L. V., \& Schauer, J. M. (2019). More than one replication study Is needed for unambiguous tests of replication. Journal of Educational and Behavioral Statistics, 44(5), 543-570. https://doi.org/10.3102/1076998619852953
Hedges, L. V., \& Vevea, J. L. (1998). Fixed- and random-effects models in metaanalysis. Psychological Methods, 3(4), 486-504. https://doi.org/10.1037/1082-989x.3.4.486
Honey, M., Alberts, B., Bass, H., Castillo, C., Lee, O., Strutchens, M. M., Vermillion, L., \& Rodriguez, F. (2020). STEM education for the future: A vision report.
Hsieh, T.-Y., Simpkins, S. D., \& Eccles, J. S. (2021). Gender by racial/ethnic intersectionality in the patterns of Adolescents' math motivation and their math achievement and engagement. Contemporary Educational Psychology, 66, 101974. https://doi.org/10.1016/j.cedpsych.2021.101974
Hyde, J. S. (2007). New directions in the study of gender similarities and differences. Current Directions in Psychological Science, 16(5), 259-263. https://doi.org/10.1111/j.1467-8721.2007.00516.x
Jiang, S., Simpkins, S. D., \& Eccles, J. S. (2020). Individuals' math and science motivation and their subsequent STEM choices and achievement in high school and college: A longitudinal study of gender and college generation status differences. Developmental Psychology, 56(11), 2137-2151. https://doi.org/10.1037/dev0001110
Jones, M. H., Audley-Piotrowski, S. R., \& Kiefer, S. M. (2012). Relationships among adolescents' perceptions of friends' behaviors, academic self-concept, and math performance. Journal of Educational Psychology, 104(1), 19-31. https://doi.org/10.1037/a0025596
Lazarides, R., Dicke, A.-L., Rubach, C., Oppermann, E., \& Eccles, J. S. (2021). Motivational profiles across domains and academic choices within Eccles et al.'s situated expectancy-value theoretical framework. Developmental Psychology, 57(11), 1893-1909. https://doi.org/10.1037/dev0001250
Lazowski, R. A., \& Hulleman, C. S. (2016). Motivation interventions in education: A meta-analytic review. Review of Educational Research, 86(2), 602-640. https://doi.org/10.3102/0034654315617832
Lee, J., Lee, H. J., Song, J., \& Bong, M. (2021). Enhancing children's math motivation with a joint intervention on mindset and gender stereotypes. Learning and Instruction, 73, 101416. https://doi.org/10.1016/j.learninstruc.2020.101416
Levine, S. C., \& Pantoja, N. (2021). Development of children's math attitudes: Gender differences, key socializers, and intervention approaches. Developmental Review, 62, 100997. https://doi.org/10.1016/j.dr.2021.100997
Marsh, H. W., Parker, P. D., Guo, J., Basarkod, G., Niepel, C., \& Van Zanden, B. (2021). Illusory gender-equality paradox, math self-concept, and frame-ofreference effects: New integrative explanations for multiple paradoxes.

International Journal of Gender, Science and Technology, Vol.14, No. 2

Journal of Personality and Social Psychology, 121(1), 168. https://doi.org/10.1037/pspp0000306
Marsh, H. W., \& Martin, A. J. (2011). Academic self-concept and academic achievement: Relations and causal ordering. The British Journal of Educational Psychology, 81(Pt 1), 59-77. https://doi.org/10.1348/000709910X503501
McGraw, R., Lubienski, S. T., \& Strutchens, M. E. (2006). A closer look at gender in NAEP mathematics achievement and affect data: Intersections with achievement, race/ethnicity, and socioeconomic status. Journal for Research in Mathematics Education, 37(2), 129-150.
Miller, D. I., Nolla, K. M., Eagly, A. H., \& Uttal, D. H. (2018). The development of children's gender-science stereotypes: A meta-analysis of 5 decades ofU.S. draw-a-scientist studies. Child Development, 89(6), 1943-1955. https://doi.org/10.1111/cdev. 13039
Muenks, K., Wigfield, A., \& Eccles, J. S. (2018). I can do this! The development and calibration of children's expectations for success and competence beliefs. Developmental Review, 48, 24-39. https://doi.org/10.1016/j.dr.2018.04.001
Nagy, G., Watt, H. M. G., Eccles, J. S., Trautwein, U., Lüdtke, O., \& Baumert, J. (2010). The development of students' mathematics self-concept in relation to gender: Different countries, different trajectories? Journal of Research on Adolescence, 20(2), 482-506. https://doi.org/10.1111/j.15327795.2010.00644.x

National Center for Science and Engineering Statistics (NCSES) (2021). Women, minorities, and persons with disabilities in science and engineering. Washington, DC: National Science Foundation. Retrieved from https://ncses.nsf.gov/pubs/nsf21321/
National Academies of Sciences, Engineering, and Medicine (NASEM) (2020). Promising practices for addressing the underrepresentation of women in science, engineering, and medicine: Opening doors. Washington, DC: The National Academies Press. https://doi.org/10.17226/25585.
Nollenberger, N., Rodríguez-Planas, N., \& Sevilla, A. (2016). The math gender gap: The role of culture. American Economic Review, 106(5), 257-61. https://doi.org/10.1257/aer.p20161121
Parker, P. D., van Zanden, B., Marsh, H. W., Owen, K., Duineveld, J. J., \& Noetel, M. (2020). The intersection of gender, social class, and cultural context: a meta-analysis. Educational Psychology Review, 32(1), 197-228. https://doi.org/10.1007/s10648-019-09493-1
Parker, P. D., van Zanden, B., \& Parker, R. B. (2018). Girls get smart, boys get smug: Historical changes in gender differences in math, literacy, and academic social comparison and achievement. Learning and Instruction, 54, 125-137. https://doi.org/10.1016/j.learninstruc.2017.09.002
Pietsch, J., Walker, R., \& Chapman, E. (2003). The relationship among self-concept, self-efficacy, and performance in mathematics during secondary school. Journal of Educational Psychology, 95(3), 589-603. https://doi.org/10.1037/0022-0663.95.3.589
Plucker, J. A., \& Makel, M. C. (2021). Replication is important for educational psychology: Recent developments and key issues. Educational Psychologist, 56(2), 90-100. https://doi.org/10.1080/00461520.2021.1895796

Rosenbloom, S. R., \& Way, N. (2004). Experiences of discrimination among African American, Asian American, and Latino Adolescents in an urban high school. Youth \& Society, 35(4), 420-451. https://doi.org/10.1177/0044118X03261479
Rosenzweig, E. Q., \& Wigfield, A. (2016). STEM motivation interventions for adolescents: A promising start, but further to go. Educational Psychologist, 51(2), 146-163. https://doi.org/10.1080/00461520.2016.1154792
Rost, D. H., Sparfeldt, J. R., Dickhäuser, O., \& Schilling, S. R. (2005). Dimensional comparisons in subject-specific academic self-concepts and achievements: A quasi-experimental approach. Learning and Instruction, 15(6), 557-570. https://doi.org/10.1016/j.learninstruc.2005.08.003
Rowley, S. J., Kurtz-Costes, B., Mistry, R., \& Feagans, L. (2007). Social status as a predictor of race and gender stereotypes in late childhood and early adolescence. Social Development, 16(1), 150-168. https://doi.org/10.1111/j.1467-9507.2007.00376.x
Safavian, N. (2019). What makes them persist? Expectancy-value beliefs and the math participation, performance, and preparedness of Hispanic youth. AERA Open, 5(3), 2332858419869342.
Scherrer, V., \& Preckel, F. (2019). Development of motivational variables and selfesteem during the school career: A meta-analysis of longitudinal studies. Review of Educational Research, 89(2), 211-258. https://doi.org/10.3102/0034654318819127
Seo, E., Shen, Y., \& Alfaro, E. C. (2019). Adolescents' beliefs about math ability and their relations to STEM career attainment: Joint consideration of race/ethnicity and gender. Journal of Youth and Adolescence, 48(2), 306325. https://doi.org/10.1007/s10964-018-0911-9

Simpkins, S. D.; Fredricks, J. A.; Eccles, J. S. (2015). The role of parents in the ontogeny of achievement-related motivation and behavioral choices. Monographs of the Society for Research in Child Development, 80(2). https://doi.org/10.1111/mono. 12165
Skaalvik, E. M., \& Rankin, R. J. (1994). Gender differences in mathematics and verbal achievement, self-perception and motivation. The British Journal of Educational Psychology, 64(3), 419-428. https://doi.org/10.1111/j.20448279.1994.tb01113.x

Skaalvik, E. M., \& Rankin, R. J. (1990). Math, verbal, and general academic selfconcept: The internal/external frame of reference model and gender differences in self-concept structure. Journal of Educational Psychology, 82(3), 546. https://doi.org/10.1037/0022-0663.82.3.546
Skinner, O. D., Kurtz-Costes, B., Vuletich, H., Copping, K., \& Rowley, S. J. (2021). Race differences in Black and White adolescents' academic gender stereotypes across middle and late adolescence. Cultural Diversity and Ethnic Minority Psychology, 27(3), 537-545. https://doi.org/10.1037/cdp0000384
Tobin, D. D., Menon, M., Menon, M., Spatta, B. C., Hodges, E. V. E., \& Perry, D. G. (2010). The intrapsychics of gender: A model of self-socialization. Psychological Review, 117(2), 601-622. https://doi.org/10.1037/a0018936
Trytten, D. A., Lowe, A. W., \& Walden, S. E. (2012). "Asians are good at math. What an awful stereotype" The model minority stereotype's impact on Asian

American engineering students. Journal of Engineering Education, 101(3), 439-468. https://doi.org/10.1002/j.2168-9830.2012.tb00057.x
Umarji, O., Dicke, A.-L., Safavian, N., Karabenick, S., \& Eccles, J. (2021). Teachers caring for students and students caring for math motivation: The development of culturally and linguistically diverse adolescents' math motivation. Journal of School Psychology, 84, 32-48. https://doi.org/10.1016/j.jsp.2020.12.004
Urdan, T., \& Bruchmann, K. (2018). Examining the academic motivation of a diverse student population: A consideration of methodology. Educational Psychologist, 53(2), 114-130. https://doi.org/10.1080/00461520.2018.1440234
Wang, M.-T., \& Degol, J. L. (2017). Gender gap in science, technology, engineering, and mathematics (STEM): Current knowledge, implications for practice, policy, and future directions. Educational Psychology Review, 29(1), 119140. https://doi.org/10.1007/s10648-015-9355-x

Watt, H. M. G. (2004). Development of adolescents' self-perceptions, values, and task perceptions according to gender and domain in 7th- through 11th-grade Australian students. Child Development, 75(5), 1556-1574. https://doi.org/10.1111/j.1467-8624.2004.00757.x
Watt, H. M. G., Shapka, J. D., Morris, Z. A., Durik, A. M., Keating, D. P., \& Eccles, J. S. (2012). Gendered motivational processes affecting high school mathematics participation, educational aspirations, and career plans: A comparison of samples from Australia, Canada, and the United States. Developmental Psychology, 48(6), 1594-1611. https://doi.org/10.1037/a0027838
Wigfield, A., \& Eccles, J. S. (2002). Students' motivation during the middle school years. In J. Aronson (Ed.), Improving Academic Achievement: Impact of Psychological Factors on Education (pp. 159-184). Elsevier. https://doi.org/10.1016/B978-012064455-1/50011-7
Wigfield, A., Eccles, J. S., Fredricks, J. A., Simpkins, S., Roeser, R. W., \& Schiefele, U. (2015). Development of achievement motivation and engagement. In M. E. Lamb \& R. M. Lerner (Eds.), Handbook of child psychology and developmental science: Socioemotional processes (pp. 657-700). John Wiley \& Sons, Inc.. https://doi.org/10.1002/9781118963418.childpsy316
Wood, D., Kurtz-Costes, B., Rowley, S. J., Okeke-Adeyanju, N. (2010). Mothers' academic gender stereotypes and education-related beliefs about sons and daughters in African American families. Journal of Educational Psychology, 102(2), 521-530. https://doi.org/10.1037/a0018481
Zusho, A., \& Kumar, R. (2018). Introduction to the special issue: Critical reflections and future directions in the study of race, ethnicity, and motivation. Educational Psychologist, 53(2), 61-63. https://doi.org/10.1080/00461520.2018.1432362

APPENDICES

Part A: Dataset information
Table A1
Description of the final samples from the datasets MSALT, CAB and MADICS

	MSALT	CAB	MADICS
Year of Assessment	1983-2000	1993-1999	1991-1997
Collected sample	working and middle-class communities	Students, parents and teachers from kindergarten to Grade 12, mostly middle class European Americans	Mostly White and African American youth and parents; broadly representative of different SES levels
Location	Michigan	Michigan	Prince George's County, Maryland
Cohort sequential design	no	yes	no
Descriptive Statistics of Sample			
$9^{\text {th }}$	--	111	--
$10^{\text {th }}$	402	155	--
$11^{\text {th }}$	--	55	690
$12^{\text {th }}$	387	109	--
Σ	789	430	690
Gender			
Male	48.9\%	46.7\%	50.4\%
Female	51.1\%	53.3\%	49.6\%
Race/Ethnicity			
European-Americans	100\%	100\%	35.9\%
Asian-Americans	--	-	--
African-Americans	--	-	64.1\%
Latinx-Americans	--	-	--

Students' achievement in math	Used construct: Math	Used construct: Intelligent	Used construct: General GPA
	Michigan educational assessment program	quotient (I.Q.) assessed in Wave 1 (1986)	
$9^{\text {th }}$		122.95 (SD = 15.99)	--
$10^{\text {th }}$	23.25 (SD = 4.61)	116.28 (SD = 16.16)	--
$11^{\text {th }}$		113.29 (SD = 12.91)	2.96 ($S D=0.78$)
$12^{\text {th }}$	24.82 (SD = 3.06)	116.06 (SD = 14.22)	--
Socio-economic background	Used construct: Family income	Used construct: Average family income across first four waves	Used construct: Family income 6.7% less than \$19,999
	2.8\% under \$10,000	0.9\% less than \$19,999	18.2\% \$20,000 to \$39,999
	7.1\% \$10,000-\$19,999	5.8\% \$20,000 to \$39,999	21.9\% \$40,000 to \$59,999
	18.8\% \$20,000-\$29,999	27.0\% \$40,000 to \$59,999	23.1\% \$60,000 to \$79,999
	29.2\% \$30,000-\$39.999	38.6\% \$60,000 to \$79,999	25.9\% over \$80,000
	42.1\% over \$40,000	27.7\% over \$80,000	
Parents' educational	Used construct: Parents' highest educational degree	Used construct: Parents' highest educational degree	Used construct: Years of parent education
Background	3.2\% some high school	7.2\% both parents with high	$\mathrm{Min}=6$
	26.6\% high school	school graduation or less	Max $=26$
	graduate	55.8% both parents are high	$M=14.94(S D=2.71)$
	35.8% some college or technical degree	school graduates but not both college graduates	
	10.2\% associates degree	36.1% college degree or	
	7.7\% college graduate	higher	
	10.0\% some graduate	0.9% both parents with PhD or	
	work	higher degree	
	5.2\% master's degree		
	1.3\% Ph.D or professional		
	degree		

Table A2
Description of the final samples from the datasets PSID-CDS, CAMP and HSLS

	PSID-CDS	CAMP	HSLS ${ }^{\text {b }}$
Year of Assessment	1997-2019	2004-2006	2009-2011
Collected sample	Nationally representative families and their children in the U.S.	Students and teachers from Grade 6 to 12 , mostly low-income immigrants	Nationally representative sample of students, teachers and parents from Grade 9 to 11
Location	U.S.	California	United States
Cohort sequential design	yes	yes	no
Descriptive Statistics of Sample			
$9{ }^{\text {th }}$	354	2721	6690
$10^{\text {th }}$	327	1742	-
$11^{\text {th }}$	323	1563	7880
$12^{\text {th }}$	260	514	-
Σ	1264	6540	14570
Gender			
Male	49.8\%	48.6\%	50.0\%
Female	50.2\%	51.4\%	50.0\%
Race/Ethnicity			
European-Americans	54.3\%	12.0\%	63.6\%
Asian-Americans	--	13.5\%	8.4\%
African-Americans	45.7\%	-	10.6\%
Latinx-Americans		74.5\%	17.4\%
Students' achievement in math	Used construct: Standardized Woodcock Johnson math test score	Used construct: California Standards Test (CST) in Mathematics assessed in Wave 1	Used construct: Algebraic reasoning assessed in Wave 1
$\underbrace{}_{10^{\text {th }}}$	$41.07(S D=6.29)$ $41.83(S D=6.45)$	$325.65(S D=52.43)$ $313.21(S D=45.35)$	52.3 (SD = 9.96)

$11^{\text {th }}$	$42.35(S D=6.70)$	$\begin{aligned} & 307.51(\mathrm{SD}=44.95) \\ & 310.70(\mathrm{SD}=46.18) \end{aligned}$	
Socio-economic background	Used construct: Family income	Used construct: National School Lunch Program (NSLP)	Used construct: Family income
	10.2\% smaller equal \$15000	Free-reduced lunch: 58.7\%	
	20.9\% \$15.001-35000	No free-reduced lunch: 41.3\%	9.0\% less or equal than
	17.9\% \$35001-55.000		\$15,000
	14.0\% \$55.001-75000		17.6\% \$15,001 to \$35,000
	8.0\% \$75001-95.000		16.3\% \$35,001 to \$55,000
	29.0\% more than \$95.001		15.0\% \$55,001 to \$75,000
			11.1\% \$75,001 to \$95,000
			31.0\% over \$95,000
Parents' educational Background	Used construct: Years of parent education$\begin{aligned} & \operatorname{Min}=3 \\ & \operatorname{Max}=17 \\ & M=13.75(S D=2.12) \end{aligned}$	Used construct: Parents' highest educational degree	Used construct: Parents' highest educational degree 6.1% less than high school 34.1\% HS or GED 15.1\% Associate's 24.8\% Bachelor's 12.7\% Master's 7.2\% PhD/MD/Law/Other
		31.4\% declined to state or unknown	
		26.7\% not a high school graduate	
		21.7\% high school graduate	
		10.9\% some college graduate	
		(includes AA degree)	
		7.2\% college graduate	
		2.1\% graduate school/postgraduate training	

training

${ }^{a}$ Source: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Part B: Instruments

Table B1

Items \& response scales of all instruments that operationalize math competence-related beliefs across datasets, factor loadings and internal consistency (omega [ω], Spearmans Brown [r]) for all grade levels

MSALT - Ability self-concept

Items: (1) How good at math are you? a
(2) If you were to rank all the students in your math class from the worst to the best in math, where would you put yourself? b
(3) Compared to most of your other school subjects, how good are you at math? ${ }^{\text {c }}$

$9^{\text {th }}$ grade	Factor loadings (λ)	Reliability (ω)	Response scale a $1=$ not at all good, $7=$ very good
$10^{\text {th }}$ grade	--	-85	b $1=$ the worst, $7=$ the best
$11^{\text {th }}$ grade	--88	--	$\mathrm{c} 1=$ much worse, $7=$ much better

CAB - Self-concept

Items: (1) How good at math are you? ${ }^{\text {a }}$
(2) If you were to list/rank all the students (in your class/in your math class) from best to worst in math where are you? ${ }^{\text {b }}$
(3) Compared to (most of your) other subjects how good are you at math? c
(4) How well do you expect to do in math this year? ${ }^{\text {d }}$
(5) How good would you be (are you) at learning something new in math? a
Factor loadings (λ) Reliability (ω) Response scale

$9^{\text {th }}$ grade	$.78-.94$.92	${ }^{\text {a }} 1=$ not at all/not very good to $7=$ very good
$10^{\text {th }}$ grade	$.73-.96$.90	${ }^{\mathrm{b}} 1=$ one of the worst to $7=$ one of the best
$11^{\text {th }}$ grade	$.82-.96$.94	d $1=$ a lot/much worse to $7=\mathrm{a}$ lot/much better
$12^{\text {th }}$ grade	$.72-.96$.92	d not well to $7=$ very well

MADICS - Ability self-concept

Items: (1) How good at math are you? ${ }^{\text {a }}$
(2) If you were to list/rank all the students (in your class/in your math class) from best to worst in math, where are you? ${ }^{\text {b }}$

$9^{\text {th }}$ grade	Factor loadings (λ)	Reliability (ω)	Response scale
$10^{\text {th }}$ grade	--	--	${ }^{\text {a }} 1=$ not at all good, $7=$ very good
$11^{\text {th }}$ grade	. $73-.88$. 85	${ }^{\mathrm{b}} 1=$ one of the worst, $7=$ one of the best
$12^{\text {th }}$ grade	--	--	
PSID-CDS - Ability self-concept			
Items: (1) How good at math are you? ${ }^{\text {a }}$			
(2) If you were to list/rank all the students (in your class/in your math class) from best to worst in math, where are you? b			
(3) Compared to (most of your) other subjects how good are you at math? c			
(4) How good would you be (are you) at learning something new in math? ${ }^{\text {d }}$			
	Factor loadings (λ)	Reliability (ω)	Response scale
$9^{\text {th }}$ grade	. 68 - . 91	. 87	${ }^{\text {a }} 1=$ not at all good, $7=$ very good
$10^{\text {th }}$ grade	--	--	${ }^{\mathrm{b}} 1=$ one of the worst, $7=$ one of the best
$11^{\text {th }}$ grade	. $63-.89$. 84	${ }^{\text {c }} 1=\mathrm{alot} / \mathrm{much}$ worse, $7=\mathrm{a} \mathrm{lot} / \mathrm{much}$ better
$12^{\text {th }}$ grade	--	--	${ }^{\text {d }} 1=$ not very good, 7 = very good

CAMP - Self-efficacy

Items: (1) How certain are you that you can learn everything taught in math?
(2) How confident are you that you can do even the hardest work in your math class?
(3) How sure are you that you can do even the most difficult homework problems in math?
(4) How confident are you that you can do all the work in math class, if you don't give up?
Factor loadings (λ) Reliability (ω) Response scale

$9^{\text {th }}$ grade	$.58-.85$.85	$1=$ Not at all certain, sure, or confident
$10^{\text {th }}$ grade	$.55-.87$.85	$3=$ Somewhat certain, sure, or confident
$11^{\text {th }}$ grade	$.53-.85$.84	$5=$ Very certain, sure, or confident

$12^{\text {th }}$ grade $\quad 59-87$

HSLS ${ }^{\text {a }}$ - Ability self-concept

Items: (1) You are confident that you can do an excellent job on tests in this course.
(2) You are certain that you can understand the most difficult material presented in the textbook used in this course.
(3) You are certain that you can master the skills being taught in this course.

$$
\text { Factor loadings }(\lambda) \quad \text { Reliability }(\omega) \quad \text { Response scale }
$$

$9^{\text {th }}$ grade	$.78-.85$.89	$1=$ strongly agree
$10^{\text {th }}$ grade	--	--	$4=$ strongly disagree
$11^{\text {th }}$ grade	$.74-.89$.89	--
$12^{\text {th }}$ grade	--		
Notes. ${ }^{\text {a }}$ Source:	U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High		
School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.			

International Journal of Gender, Science and Technology, Vol.14, No. 2

Part C: Measurement Invariance

Table C1
MSALT - Model Fit Indices of the Stepwise Procedure to Test Measurement Invariance for Math Self-Concept ($N=789$)

	χ^{2}	$d f$	CFI	$\triangle C F I$	TLI	RMSEA	$\triangle R M S E$	SRMR	$\triangle S R M R$
Time*Gender									
Step 0	0.00	0	1.00		1.00	. 000		. 000	
Step 1	5.06	2	. 997	-. 003	. 992	. 062	. 062	. 043	. 043
Step 2	16.50	5	. 990	-. 007	. 988	. 076	. 014	. 071	. 028

Notes. For the invariance test, data from 2002 and 2007 were merged. Step 0 = baseline model, Step 1 = configural invariance, Step 2 = metric invariance, Step 3 = scalar invariance.

Table C2

CAB - Model Fit Indices of the Stepwise Procedure to Test Measurement Invariance for Math Self-Concept ($N=430$)

| x^{2} | $d f$ | $C F I$ | $\triangle C F I$ | TLI | RMSEA | $\Delta R M S$ | SRMR | $\Delta S R M R$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | $E A$ | | | |

Y-cohort ($9^{\text {th }}$ to $12^{\text {th }}$ grade) Time*Gender

Step 0	85.31	66	.982		.975	.059		.061	
Step 1	104.63	77	.974	-.008	.970	.066	.007	.104	.053
Step 2	100.20	80	.981	.007	.979	.055	-.011	.093	-.011

M -Cohort ($9^{\text {th }}$ to $10^{\text {th }}$ and $10^{\text {th }}$ to $12^{\text {th }}$ grade) Time*Gender

Step 0	232.80	157	.952		.935	.074		.074	
Step 1	253.11	177	.951	-.001	.942	.070	-.004	.101	.027
Step 2	267.47	182	.945	-.006	.937	.073	.003	.100	-.001

O-Cohort (10 th to $11^{\text {th }}$ and $11^{\text {th }}$ to $12^{\text {th }}$ grade) Time*Gender

Step 0	262.98	144	.941		.914	.094		.057	
Step 1	291.29	164	.937	-.004	.920	.091	-.003	.081	.024

Step 2	303.54	179	.939	.002	.928	.086	-.005	.094	.013

Notes. Step $0=$ baseline model, Step $1=$ configural invariance, Step $2=$ metric invariance, Step 3 = scalar invariance

Table C3

MADICS - Model Fit Indices of the Stepwise Procedure to Test Measurement Invariance for Math Self-Concept $(N=690)$

	X^{2}	$d f$	CFI	Δ CFI	TLI	RMSEA	$\triangle R M S E A$	SRMR	Δ SRMR
Across Gender									
Step 0	0.00	0	1.000		1.000	.000		.000	
Step 1	0.14	2	1.000	.000	1.020	.000	.000	.011	.011
Step 2a	15.99	5	.960	-.040	.952	.083	.017	.043	.033
Step 2b	1.78	4	1.000	$.000^{a}$	1.012	.000	$.000^{a}$.021	$.010^{a}$
Across Race/Ethnicity									
Step 0	0.00	0	1.000		1.000	.000		.000	
Step 1a	8.26	2	.978	-.022	.933	.099	.099	.086	.086
Step 1b	0.05	1	1.000	$-.000^{a}$	1.020	.000	.000	.003	.003
Step 2a	44.57	4	.855	-.123	.783	.178	.178	.064	.061
Step 2b	9.42	3	.977	$-.023^{a}$.954	.082	.082	.056	.053

Notes. No longitudinal data were available, we conducted invariance test with data from Grade 11. Step $0=$ baseline model, Step 1 = configural invariance, Step 2 = metric invariance, Step 3 = scalar invariance. ${ }^{\text {a }}$ Partial measurement invariance was tested.

Table C4

PSID-CDS - Model Fit Indices of the Stepwise Procedure to Test Measurement Invariance for Math Self-Concept ($N=1264$)

	X^{2}	$d f$	CFI	$\Delta C F I$	TLI	RMSEA	$\triangle R M S E A$	SRMR	$\Delta S R M R$
Across Gender									
Step 0	8.00	4	.998		.995	.040		.009	.022
Step 1	14.78	7	.997	-.001	.994	.042	.002	.031	.029
Step 2	33.05	11	.990	-.007	.989	.056		.014	.060
Across Race/Ethnicity									
Step 0	2.69	4	1.00		1.00	.000		.005	
Step 1	5.77	7	1.00	.000	1.00	.000	.000	.024	.019
Step 2a	55.07	11	.981	-.019	.979	.080	.080	.061	.037
Step 2b	8.56	9	1.00	$.000^{a}$	1.00	.000	$.000^{\text {a }}$.028	$.004^{\text {a }}$

Notes. No longitudinal data were available. Thus, no invariance across time was conducted. Step $0=$ baseline model, Step $1=$ configural invariance, Step $2=$ metric invariance, Step 3 = scalar invariance. ${ }^{\text {a Partial measurement invariance }}$ was tested.

Table C5

CAMP - Model Fit Indices of the Stepwise Procedure to Test Measurement Invariance for Math Self-Efficacy $(N=6540)$

	χ^{2}	$d f$	CFI	$\triangle C F I$	TLI	RMSEA	$\triangle R M S E A$	SRMR	$\triangle S R M R$
Time*Gender									
Step 0	138.11	30	. 994		. 988	. 033		. 017	
Step 1	189.91	39	. 991	-. 003	. 987	. 034	. 001	. 032	. 015
Step 2a	639.70	50	. 965	-. 026	. 961	. 060	. 026	. 063	. 031
Step 2b	315.92	46	. 984	-.007a	. 980	. 042	. $012{ }^{\text {a }}$. 048	.016 ${ }^{\text {a }}$
Time* Race/Ethnicity									
Step 0	164.04	45	. 993		. 987	. 035		. 017	
Step 1	185.89	60	. 993	. 000	. 990	. 031	-. 004	. 021	. 004
Step 2	331.25	80	. 985	-. 008	. 985	. 038	. 003	. 037	. 016

Notes. Step 0 = baseline model, Step 1 = configural invariance, Step $2=$ metric invariance, Step 3 = scalar invariance. a Partial measurement invariance was tested.

Table C6
HSLS - Model Fit Indices of the Stepwise Procedure to Test Measurement Invariance for Math Self-Concept ($N=14570$)

	χ^{2}	$d f$	CFI	$\triangle C F I$	TLI	RMSEA	$\triangle R M S E A$	SRMR	$\triangle S R M R$
Time*Gender									
Step 0	21.11	9	1.00		1.00	. 014		. 006	
Step 1	50.22	14	1.00	-. 00	. 997	. 019	. 005	. 018	. 012
Step 2a	516.01	22	. 983	-. 017	. 977	. 056	. 037	. 054	. 036
Step 2b	148.28	19	. 996	-.004 ${ }^{\text {a }}$. 993	. 031	. $012^{\text {a }}$. 025	. $007{ }^{\text {a }}$
Time* Race/Ethnicity									
Step 0	60.70	20	. 999		. 996	. 024		. 012	
Step 1	148.55	34	. 996	-. 003	. 993	. 030	. 006	. 030	. 018
Step 2a	1113.84	55	. 963	-. 033	. 959	. 073	. 043	. 098	. 068
Step 2b	243.49	46	. 993	-.003a	. 991	. 034	.004 ${ }^{\text {a }}$. 034	.004a

Notes. Step 0 = baseline model, Step 1 = configural invariance, Step 2 = metric invariance, Step 3 = scalar invariance. ${ }^{\text {a Partial measurement invariance was }}$ tested, Source: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Part D: Missing data

D1. Missing data in MSALT. See Table D1.1 for the overview of our selection of the final subsample. First, 574 students from the original sample were not included in this study because of our focus on high school students. In the second and third step, we excluded 1,075 students with missing data on demographics because of our focus on gender and racial/ethnic differences and our aim to investigate the influence of important background variables (i.e., students' math competence test score, parents' highest education degree and family income). Finally, 35 students with complete missing data on competence beliefs items (i.e., self-concept) were excluded. The composition of the final subsample included students in 402 students in $10^{\text {th }}$ grade and 387 students in $12^{\text {th }}$ grade.

Table D1.1
Overview of included and excluded cases

Steps	Included are \ldots	Excluded cases (n)	Included Cases (n)
Full data	only students in $9^{\text {th }}$ to $12^{\text {th }}$ grade	574	2472
Step 1	only only students with information on Step	0	1898
Step 3	gender and ethnicity/race only students with information on parent education, family SES and student performance	1,075	1898
Step 4only students with data on competence-related beliefs	35	823	

Differences in competence beliefs between excluded and included cases. The following table D.1.2 shows the mean level differences in students' math selfconcept between the students that were excluded from the analysis and students in the final subsample. Because of unequal and small group sizes, a Wilcoxon test was conducted. To obtain this information, we included students in $10^{\text {th }}$ and $12^{\text {th }}$ grade, which means we included high school students with and without information on important background variables.
Results. Comparing students with and without missing data on any of the included background variables showed that there were significant differences in students' math self-concept between excluded and included students.

Table D1. 2
Differences in students' self-concept between included and excluded cases

		n	M	$S D$	Wilcoxon	
					Z	p
SK10	Included cases	402	5.05	1.21		
	Excluded cases	68	4.91	1.27	-.97	.33
SK12	Included cases	387	4.72	1.30		
	Excluded cases	89	4.75	1.26	-.05	.96

Differences in important background variables between excluded and included cases. The following table D1.3 shows the associations (r) between the selection of students and their gender, race/ethnicity, standardized math test performance (meap), parents' highest education degree (par.edu) and family yearly income (income). Two comparisons were used, (a) Filter 1 refers to students in the final sample $(n=789)$ compared with all other students from the full sample ($n=$ 1,682); (b) Filter 2 refers to students in the final sample ($n=789$) compared with excluded students in $10^{\text {th }}$ and $12^{\text {th }}$ grade ($n=1,108$). Significant correlations might indicate differences in the distribution of included background variables of included students compared with the excluded students. Results. Comparing included students with excluded students indicated small correlations between the sample selection and important background variables. Most notably, students included in the final subsample had higher math competence test scores, higher parent education and higher family income.

Table D1.3

Correlations (r) between the selection of students and included background variables

	Meap	Par.edu	Income
Filter 1	$.27^{* *}$	$.19^{*}$	$.11^{*}$
Filter 2	$.16^{* *}$	$.10^{*}$.01

D2. Missing data in CAB. See Table D2.1 for the overview of our selection of the final subsample. First, 528 students from the original sample were not included in this study because of our focus on high school students. In the second and third step, we excluded 203 students with missing data on demographics due to our focus on gender and racial/ethnic differences and aim to investigate the influence of important background variables (i.e., students' intelligence quotient, parents' highest education degree, and family income). Finally, students with complete missing data on competence beliefs items (i.e., self-concept) were excluded. The composition of the included students by grade level was 111 students in 9th grade, 155 students in 10th grade, 55 students in 11 th grade, and 109 students in 12th grade.

Table D2.1
Overview of included and excluded cases

Steps	Included are ...	Excluded Cases (n)	Included Cases (n)
Full data	only students in ninth to $12^{\text {th }}$ grade	528	1171
Step 1	only students with information on Step 2	61	643
Step 3	whites) only students with information on parent education, family income and student performance	142	582
Step 4	only students with data on competence-related beliefs	0	430

Differences in math competence-related beliefs between excluded and included cases. The following table shows mean level differences in students' math selfconcept between the students that were excluded from the analysis and students in the final subsample (see Table D2.2). Because of unequal and small group sizes, a Wilcoxon test was conducted. To compare mean-level differences, we included the students from $9^{\text {th }}$ to $12^{\text {th }}$ grade, which means we included students with and without information on important background variables.
Results. Comparing students with and without missing data on any of the included background variables showed no differences in students' math selfconcept between excluded and included students.

International Journal of Gender, Science and Technology, Vol.14, No. 2

Table D2.2
Differences in students' self-concept between included and excluded cases

		n	M	$S D$	Wilcoxon	
					Z	p
SK9	Included cases	111	4.86	1.23		
	Excluded cases	8	5.30	0.72	-0.91	.36
SK10	Included cases	155	4.81	1.26		
	Excluded cases	13	5.05	1.37	-0.57	.57
SK11	Included cases	55	4.74	1.42		
	Excluded cases	7	4.40	1.68	-0.54	.59
SK12	Included cases	109	4.41	1.42		
	Excluded cases	10	4.94	1.09	-1.04	.30

Differences in important background variables between excluded and included cases. The following table D. 2.3 shows the associations (r) between the selection of students and their gender, intelligent quotient (IQ), parents' highest education degree (par.edu), and families' income (income). Two comparisons were used,
(a) Filter 1 refers to students in the final sample $(n=430)$ compared to all other students from the full sample ($\mathrm{n}=731$); (b) Filter 2 refers to students in the final sample ($\mathrm{n}=430$) compared to excluded students in $9^{\text {th }}$ to $12^{\text {th }}$ grade $(\mathrm{n}=$ 203). Significant correlations might indicate differences in the distribution of included background variables of included students compared to the excluded students.
Results. Comparing included students with either excluded students from the full sample with excluded in $9^{\text {th }}$ to $12^{\text {th }}$ grade indicated small correlations between the sample selection and students' intelligence quotient and parents' income.

Table D2.3
Correlations (r) between the selection of students and included background variables

	Gender	IQ	Par.edu	Income
Filter 1	-.04	$.12^{*}$	-.01	$.10^{*}$
Filter 2	-.04	$.16^{*}$	-.01	$.10^{*}$
Notes. ${ }^{*} p \leq .05,{ }^{* *} p \leq .01,{ }^{* * *} p \leq .001$				

D3. Missing data in MADICS. See Table D6.1 for the overview of our sample selection of the final subsample. First, 425 students from the original sample were not included in this study because of our focus on high school students. In the second and third step, we excluded 351 students with missing data on demographics due to our focus on gender and racial/ethnic differences and our aim to investigate the influence of important background variables (i.e., students' math GPA, parents' highest education degree and family income). Finally, 16 students that had complete missing data on competence beliefs items (i.e., self-concept) were excluded. The composition of the included students by grade level was 690 students in 11th grade.

Table D3.1
Overview of included and excluded cases

Steps	Included are \ldots	Excluded Cases (n)	Included Cases (n)
Full data	only students in $9^{\text {th }}$ to $12^{\text {th }}$ grade	425	1482
Step 1			
Step 2	only students with information on gender and ethnicity/race	292	1057
Step 3	only students with information on parent education, family income and student performance	59	765
Step 4only students with data on competence-related beliefs	16	706	

Differences in competence beliefs between excluded and included cases. The following table D3.2 shows the mean level differences in students' math selfconcept between students that were excluded from the analysis and students in the final subsample. We included only students in $11^{\text {th }}$ grade, which means we compared students with and without information on important background variables.
Results. Comparing students with and without missing data on any of the included background variables showed that there were significant differences in students' math self-concept between excluded and included students.

Table D3. 2
Differences in students' self-concept between included and excluded cases

		n	M	$S D$	t	$d f$	p
SK11	Included cases	690	5.10	1.26			
	Excluded cases	136	4.98	1.33	0.98	824	.33

Differences in important background variables between excluded and included cases. The following table D3.3 shows the associations (r) between the selection of students and their gender, math competence test score (GPA), parents' highest education degree (par.edu) and families' income (income, see Table D6.3). One comparison (Filter 1) was used, i.e., students in the final sample ($\mathrm{n}=$ 690) were compared to excluded students in $11^{\text {th }}$ grade ($n=417$). Significant correlations might indicate differences in the distribution of included background variables of selected students compared to the excluded students.

Results. Comparing included students with excluded students in $11^{\text {th }}$ grade indicated some meaningful correlations. Differences were found for race/ethnicity compositions, parent education background, and income. Correlations for parent education background and income were weak.

Table D6.3

Correlations (r) between the selection of students and included background variables

	Gender	Race	GPA	Par.edu	Income
Filter 1	-.035	$-.65^{* *}$	-.05	$-.10^{* *}$	$.07^{*}$

D4. Missing data in PSID-CDS. See Table D4.1 for the overview of our selection of the final subsample. First, 1,404 students from the original sample were not included in this study because of our focus on high school students. In the second and third step, we excluded 128 students with missing data on demographics because of our focus on gender and racial/ethnic differences and our aim to investigate the influence of important background variables (i.e., students' math competence test score, parents' highest education degree and family income). Finally, 167 students with complete missing on competence beliefs items (i.e., self-concept) were excluded. The composition of the included students by grade level was 354 students in $9^{\text {th }}$ grade, 327 students in $10^{\text {th }}$ grade, 323 students in $11^{\text {th }}$ grade and 260 students in $12^{\text {th }}$ grade.

Table D4. 1
Overview of included and excluded cases

Steps	Included are ...	Excluded cases (n)	Included Cases (n)
Full data			2,963
Step 1	only students in $9^{\text {th }}$ to $12^{\text {th }}$ grade	1,404	1,559
Step 2	only students with information on gender and ethnicity/race	0	1,559
Step 3	only students with information on parent education, family SES and student performance	128	1,431
Step 4	only students with data on competence-related beliefs	167	1,264

Differences in math competence-related beliefs between excluded and included cases. The following table D3.2. shows the mean level differences in students' math self-concept between the students that were excluded from the analysis and students in the final subsample. To obtain this information, we included only students from $9^{\text {th }}$ to $12^{\text {th }}$ grade, which means we included students with and without information on important background variables.
Results. Comparing students with and without missing data on any of the included background variables showed no differences in students' math selfconcept between excluded and included students.

Table D4. 2
Differences in students' self-concept between included and excluded cases

		n	M	$S D$	t	$d f$	p
SK9	Included cases	354	4.80	1.17			
	Excluded cases	90	4.54	1.32	-1.89	442	.06
SK10	Included cases	327	4.65	1.17			
	Excluded cases	72	4.62	1.30	-0.19	397	.85
SK11	Included cases	323	4.67	1.19			
	Excluded cases	63	4.61	1.09	-0.37	384	.71
SK12	Included cases	260	4.46	1.20			
	Excluded cases	63	4.41	1.31	-0.32	321	.75

Differences in important background variables between excluded and included cases. The following table D4.3. shows the associations (r) between the selection of students and their gender, math competence test score (math woodcock), parents' highest education degree (par.edu), and families' income (income). One comparisons was used, Filter 1 refers to students in the final sample ($n=1,264$) compared with excluded students in $9^{\text {th }}$ to $12^{\text {th }}$ grade ($\mathrm{n}=295$). Significant correlations might indicate differences in the distribution of included background variables of included students compared to excluded students.
Results. Comparing included students with excluded students in $9^{\text {th }}$ to $12^{\text {th }}$ grade indicated meaningful correlations. The analyzed final subsample differed from the excluded sample in race/ethnicity distributions, had higher math competence scores, family income, and parent educational background. The racial/ethnic distribution refers to the composition of European-Americans and AfricanAmericans in the samples.

Table D4. 3

Correlations (r) between the selection of students and included background variables

	Gender	Race/Ethnicity	Math Woodcock	Par.edu	Income
Filter 1 .02	$-.61^{* *}$	$.09^{* *}$	$.31^{* *}$	$.08^{* *}$	

Notes. ${ }^{*} p \leq .05,{ }^{* *} p \leq .01, * * * p \leq .001$

D5. Missing data in CAMP

See Table D5.1 for the overview of our selection of the final subsample. First, 5,312 students from the original sample were not included in this study because of our focus on high school students. In the second and third step, 2423 students with missing data on demographics were excluded due to our focus on gender and racial/ethnic differences and our aim to investigate the influence of important background variables (i.e., students' score in the California Standards Test (CST), parents' highest education degree and students' participation in the National School Lunch Program in California (NSLP)). Finally, students with completely missing data on competence beliefs items (i.e., self-efficacy) were excluded. The composition of the included students by grade level was 2,721 students in $9^{\text {th }}$ grade, 1,742 students in $10^{\text {th }}$ grade, 1,563 students in $11^{\text {th }}$ grade and 514 students in $12^{\text {th }}$ grade.

Table D5. 1
Overview of included and excluded cases

Steps	Included are \ldots	Excluded cases (n)	Included cases (n)
Full data	only students in $9^{\text {th }}$ to $12^{\text {th }}$ grade	5,312	15,893
Step 1	only students with information on	714	9,581
Step 2	onder gender and ethnicity/race	1,709	8,158
Step 3only students with information on parent education, family SES and student performance only students with data on competence-related beliefs	1,616	6,540	

Differences in competence beliefs between excluded and included cases. The following table D5.2 indicates differences in students' math self-efficacy between the students that were excluded from the analysis and students in the final subsample. To obtain this information, we included the students in $9^{\text {th }}$ to $12^{\text {th }}$ grade, which means we included students with and without information on important background variables in high school. Also, to compare students in the same grade level, we conducted the analyses by cohort.
Results. Comparing students with and without missing data on any of the included background variables showed no differences in students' math selfefficacy between excluded and included students by cohort.

Table D5. 2
Differences in students' self-efficacy between included and excluded cases in high school

	Excluded cases		Included cases		t	$d f$	p
	M	SD	M	SD			
Cohort 0 ($8^{\text {th }}$ to $9^{\text {th }}$ grade)							
Self-efficacy T1	3.35	. 82	3.29	. 80	1.79	2746	. 07
Self-efficacy T2	3.28	. 90	3.24	. 82	0.52	1704	. 61
Cohort A ($9^{\text {th }}$ to $10^{\text {th }}$ grade)							
Self-efficacy T1	3.18	. 87	3.26	. 83	-1.70	2384	. 09
Self-efficacy T2	3.37	. 89	3.25	. 84	1.52	1879	. 13
Cohort B (10 ${ }^{\text {th }}$ to $11^{\text {th }}$ grade)							
Self-efficacy T1	3.14	. 91	3.22	. 83	-1.78	745.3	. 08
Self-efficacy T2	3.20	. 87	3.24	. 85	-0.63	1534	. 53
Cohort C (11 ${ }^{\text {th }}$ to $12^{\text {th }}$ grade)							
Self-efficacy T1	3.14	. 85	3.22	. 82	-1.90	2077	. 06
Self-efficacy T2	3.15	. 82	3.24	. 84	-1.37	1127	. 17
Cohort D (12 ${ }^{\text {th }}$ grade)							
Self-efficacy T1	3.15	. 86	3.45	. 69	-1.95	1235	. 05

Notes. Number of excluded cases for T1 $(\mathrm{n}=7233)$ and T2 $(\mathrm{n}=5199)$.
Differences in important background variables between excluded and included cases. The following table shows the associations (r) between the selection of students and their gender, race/ethnicity, performance (California Standards Test (CST)), parents' highest education degree (par.edu), and families' socioeconomic background (participation in the National School Lunch Program in California (NSLP)). Two comparisons were used: (a) Filter 1 refers to students in the final sample ($n=6540$) compared to all other students from the full sample ($n=$ 9351); (b) Filter 2 refers to students in the final sample ($n=6540$) compared to excluded students in $9^{\text {th }}$ to $12^{\text {th }}$ grade $(\mathrm{n}=4039)$. Significant correlations might indicate differences in the distribution of included background variables of included students compared to the excluded students.
Results. Comparing included students with either excluded students from the full sample or with excluded students in $9^{\text {th }}$ to $12^{\text {th }}$ grade indicated only small correlations between the sample selection and important background variables. Most notably, students included in the final subsample had lower CST scores compared to all other excluded students.

Table D5.3
Correlations (r) between the selection of students and included background variables

	Gender	Race/ethnicity	CST	Par.edu	NSLP
Filter 1	.02	$-.04^{*}$	$-.10^{*}$	$.07^{*}$	$.05^{*}$
Filter 2	$.02^{*}$	$-.05^{*}$	$.04^{*}$	$-.07^{*}$	$-.07^{*}$

Notes. *p $\leq .05, * * p \leq .01, * * * \leq .001$

D6. Missing data in HSLS

See Table D6.1 for the overview of our selection of the final subsample. First, all students from the original sample were included in this study because of our focus on high school students. In the second and third step, we excluded 8,980 students with missing data on demographics due to our goal to investigate gender and racial/ethnic differences with important background variables included (i.e., students' math competence test score, parents' highest education degree, and family income). Finally, 1,660 students with missing data on competence beliefs items (i.e., self-concept) were excluded.
The composition of the included students by grade level was 6,700 students in $9^{\text {th }}$ grade, and 7,790 students in $11^{\text {th }}$ grade.

Table D6.1
Overview of included and excluded cases

Steps	Included are ...	Excluded cases $\mathbf{(n)}$	Included Cases (n)
Full data	only students in 9 th to $12^{\text {th }}$ grade	0	25,200
Step 1	only students with information on Step 2	2,950	22,260
Step 3	gender and ethnicity/race only students with information on parent education, family SES and student performance only students with data on competence-related beliefs	6,030	16,230
Step 4	1,660	14,570	

Notes. Source: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Differences in competence beliefs between excluded and included cases. The following table D6.2 shows the mean level differences in students' math selfconcept between the students that were excluded from the analysis and students in the final subsample. For this comparison, we included the students in $9^{\text {th }}$ and $11^{\text {th }}$ grade, which means we included students with and without information on important background variables.
Results. Comparing students with and without missing data on any of the included background variables showed significant differences in students' math self-concept between excluded and included students.

Table D6. 2

Differences in students' self-efficacy between included and excluded cases

	Excluded cases		Included cases		t	df	p
Self-concept (9 ${ }^{\text {th }}$ grade)	2.84	0.69	2.97	0.65	-11.63	18760	. 00
Self-concept (11 ${ }^{\text {th }}$ grade)	2.73	0.71	2.79	0.71	-5.98	19770	. 00

Notes. Number of cases for excluded students for T1 ($\mathrm{n}=4450$) and T2 ($\mathrm{n}=$ 5680), Source: U.S. Department of Education, Institute of Education Sciences,

National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Differences in important background variables between excluded and included cases. The following table shows the associations (r) between the selection of students and their gender, race/ethnicity, standardized math test performance (math.test), parents' highest education degree (par.edu), and family income (income). Students in the final sample ($n=14,570$) were compared to excluded students in $9^{\text {th }}$ to $11^{\text {th }}$ grade $(\mathrm{n}=11,160)$ (Filter 1). Significant correlations might indicate differences in the distribution of included background variables of included students compared to excluded students.
Results. Comparing included students with excluded students in in $9^{\text {th }}$ to $11^{\text {th }}$ grade indicated small correlations between the sample selection and important background variables. Most notably, students included in the final subsample had lower standardized math test scores compared to excluded students.

Table D6. 3

Correlations (r) between the selection of students and included background variables

	Gender	Race/ethnicity	Math test	Par.edu	Income
Filter1	$.02^{* * *}$	$-.12^{* * *}$	$.18^{* * *}$	$.02^{* * *}$	$.06 * * *$

Notes. * p $\leq .05, * * \mathrm{p} \leq .01, * * * \mathrm{p} \leq .001$ Source: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Part E: Results without covariates

Table E1
Descriptive statistics of gender differences in math competence-related beliefs across grade levels and datasets without covariates

Grade level	Dataset ${ }^{\text {a }}$	Scale Range	Male N	M	SD	95\%		POMP	Femal N	M	SD			POMP
9	HSLS ${ }^{\text {b }}$	1-4	3310	2.96	1.50	2.91	3.01	65.23	3390	2.84	1.14	2.80	2.88	61.37
	CAMP	1-5	1296	3.34	0.85	3.29	3.38	58.50	1425	3.16	0.81	3.11	3.20	54.00
	PSID-CDS	1-7	179	5.01	1.67	4.77	5.25	66.87	175	4.88	1.31	4.69	5.08	64.67
	CAB	1-7	52	4.94	1.15	4.60	5.28	65.71	59	4.78	1.30	4.47	5.10	63.05
10	CAMP	1-5	864	3.35	0.86	3.29	3.41	58.81	878	3.13	0.78	3.08	3.19	53.28
	PSID-CDS	1-7	178	4.85	1.36	4.65	5.05	64.14	149	4.60	1.54	4.35	4.84	59.93
	CAB	1-7	79	4.88	1.23	4.60	5.16	64.73	76	4.73	1.30	4.44	5.01	62.11
	MSALT	1-7	193	5.17	1.25	4.98	5.34	69.47	209	4.93	1.17	4.77	5.10	65.55
11	HSLS ${ }^{\text {b }}$	1-4	3980	2.72	1.31	2.68	2.76	57.38	3900	2.58	1.31	2.54	2.62	52.79
	CAMP	1-5	742	3.33	0.82	3.27	3.39	58.22	821	3.13	0.83	3.07	3.18	53.13
	PSID-CDS	1-7	157	4.94	1.69	4.67	5.20	65.59	166	4.45	1.37	4.24	4.66	57.48
	MADICS	1-7	348	5.08	1.28	4.94	5.22	67.91	342	4.88	1.38	4.74	5.03	64.73
	CAB	1-7	23	5.16	1.41	4.57	5.74	69.28	32	4.44	1.38	3.94	4.93	57.29
12	CAMP	1-5	278	3.38	0.78	3.28	3.46	59.37	236	3.12	0.83	3.01	3.23	53.03
	PSID-CDS	1-7	116	4.87	1.62	4.58	5.17	64.52	144	4.32	1.67	4.04	4.59	55.30
	CAB	1-7	47	4.59	1.48	4.18	5.00	59.79	62	4.27	1.37	3.91	4.63	54.52
	MSALT	1-7	192	4.85	1.26	4.67	5.04	64.22	195	4.59	1.32	4.41	4.78	59.90

Notes. ${ }^{\text {a }}$ Order of datasets according to age from youngest (top) to oldest dataset (bottom); CI = confidence interval; POMP = Percent Of Maximum Possible score, ${ }^{\text {b }}$ Source: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Table E2
Effects of gender differences without covariates, combined effects and results on the heterogeneity of effects in 9 th and 10th grade

	$9^{\text {th }}$ grade						$10^{\text {th }}$ grade					
	F	$d f$	p	g	S.E.	95 \% CI	F	df	p	g	S.E.	95 \% CI
MSALT	--						3.80	1,400	. 05	. 20	. 10	.00; . 40
CAB	0.46	1, 109	. 50	. 13	. 19	-.24; . 50	0.60	1, 153	. 44	. 12	. 16	-.20; . 43
PSID-CDS	0.68	1, 343	. 41	. 09	. 11	-.12; . 30	2.44	1, 320	. 12	. 17	. 11	-.05; . 39
CAMP	32.46	1, 2719	<. 001	. 22	. 04	.14; . 29	30.57	1,1740	<. 001	. 27	. 05	.17; . 36
HSLS ${ }^{\text {b }}$	18.67	1,480	<. 001	. 09	. 02	.04; . 14	--					
Combined effect Heterogeneity		$Q=7.87, d f=3, p=.05 ; I^{2}=61.89$										

Notes. Order of datasets according to age from youngest (top) to oldest dataset (bottom); S.E. = standard error. $C I=$ confidence interval; ${ }^{a}=$ refers to the fixed effect model based on the non-significance of the Q-statistic, ${ }^{\text {b }}$ $=$ refers to the random effect model based on the significance of the Q -statistic; $\mathrm{Q}=$ tests fixed effect model against random effect model, i.e., null hypotheses is that effect sizes are similar across datasets, which corresponds the fixed effect model; $\mathrm{I}^{2}=$ indicates the percentage of variance of real differences in effect sizes; reported results do not included covariates, ${ }^{\text {b }}$ Source: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Table E3
Effects of gender differences without covariates, combined effects and results on the heterogeneity of effects in 11th and 12th grade

	$11^{\text {th }}$ grade						$12^{\text {th }}$ grade					
		$d f$	p	g	S.E.	95 \% CI		$d f$	p	g	S.E.	95 \% CI
MSALT	--						3.91	1,385	. 05	. 20	. 10	.00; . 40
CAB	3.57	1,53	. 06	. 52	. 28	-.03; 1.06	1.33	1,107	. 25	. 23	. 19	-.12; . 61
MADICS	3.55	1,688	. 06	. 15	. 08	.00; . 31	--			--		
PSID-CDS	8.05	1, 311	. 01	. 32	. 11	.10; . 54	7.30	1,248	. 01	. 33	. 13	.09; . 58
CAMP	23.61	1,1561	<. 001	. 24	. 05	.14; . 34	13.09	1,512	$<.001$. 32	. 09	.15; . 50
HSLS ${ }^{\text {b }}$	26.92	1,480	<. 001	. 11	. 02	.06; . 15	--			--		
Combined effect Heterogeneity			10.63,	.19 $=4$,	.05 $=.03$	$\begin{gathered} .10 ; .29 \\ I^{2}=62.37 \\ \hline \end{gathered}$			$Q=1.10$	$.28{ }^{\text {a }}$.06 $p=$	$\begin{array}{r} .17 ; .39 \\ I^{2}=0.00 \end{array}$

Notes. See Table E2.

Table E4
Descriptive statistics of math competence-related beliefs by gender and race/ethnicity across datasets without covariates

Grade levels	Datasets ${ }^{\text {a }}$	Scale Range	Males N	M	SD	95\% CI		POMP	$\begin{aligned} & \text { Fema } \\ & N \end{aligned}$	M	SD	95\% CI		POMP
African-Americans														
9	PSID-CDS	1-7	78	4.64	2.15	4.16	5.12	60.64	73	4.67	1.63	4.29	5.05	61.18
	HSLS ${ }^{\text {b }}$	1-4	370	2.95	0.51	2.90	3.01	65.13	320	2.99	0.84	2.90	3.08	66.29
10	PSID-CDS	1-7	88	4.48	1.20	4.22	4.73	57.93	68	4.36	2.57	3.74	4.97	55.98
	MADICS	1-7	231	5.08	1.25	4.91	5.24	67.94	211	4.87	1.32	4.69	5.04	64.46
	PSID-CDS	1-7	82	4.87	2.04	4.43	5.32	64.55	74	4.61	1.57	4.24	4.97	60.09
	HSLS ${ }^{\text {b }}$	1-4	420	2.74	0.92	2.65	2.83	57.99	440	2.73	1.03	2.63	2.83	57.67
12	PSID-CDS	1-7	47	4.72	1.55	4.27	5.16	61.95	68	4.87	1.79	4.44	5.30	64.45
Asian-Americans														
9	CAMP	1-5	157	3.47	0.82	3.35	3.60	61.75	158	3.33	0.77	3.21	3.43	58.25
	HSLS ${ }^{\text {b }}$	1-4	260	3.20	0.38	3.16	3.25	73.47	290	3.01	0.42	2.96	3.06	66.98
10	CAMP	1-5	114	3.53	0.77	3.40	3.66	63.25	114	3.26	0.68	3.13	3.38	56.50
11	CAMP	1-5	120	3.39	0.79	3.25	3.53	59.75	111	3.14	0.76	2.99	3.28	53.50
	HSLS ${ }^{\text {b }}$	1-4	340	2.83	1.27	2.70	2.97	61.06	340	2.63	1.75	2.44	2.81	54.20
12	CAMP	1-5	65	3.43	0.78	3.25	3.63	60.75	44	2.93	0.73	2.71	3.14	48.25
European-Americans														
9	PSID-CDS	1-7	102	5.10	1.44	4.82	5.38	68.32	101	4.91	1.12	4.69	5.13	65.22
	CAMP	1-5	143	3.36	0.93	2.98	3.26	59.00	167	3.12	0.93	2.98	3.26	53.00
	HSLS ${ }^{\text {b }}$	1-4	2130	2.97	0.84	2.93	3.00	65.60	2180	2.84	0.76	2.81	2.87	61.39
10	PSID-CDS	1-7	90	4.95	1.15	4.71	5.19	65.78	81	4.66	1.21	4.40	4.93	61.06
	CAMP	1-5	109	3.31	0.86	3.15	3.47	57.95	107	3.17	0.86	3.01	3.33	54.25
11	MADICS	1-7	117	5.07	1.34	4.81	5.33	67.85	131	4.91	1.48	4.67	5.16	65.18
	PSID-CDS	1-7	75	4.96	1.41	4.63	5.28	65.92	92	4.41	1.19	4.17	4.66	56.89
	CAMP	1-5	97	3.23	0.85	3.05	3.40	55.75	112	3.01	0.93	2.84	3.20	50.25
12	HSLS ${ }^{\text {b }}$	1-4	2520	2.74	0.96	2.70	2.78	58.01	2440	2.56	1.02	2.52	2.61	52.14
	PSID-CDS	1-7	69	4.91	1.51	4.55	5.27	65.19	76	4.20	1.36	3.89	4.51	53.37
	CAMP	1-5	27	3.35	0.82	3.03	3.65	58.75	23	2.61	0.97	2.23	3.00	40.25
Latinx-Americans														
9	CAMP	1-5	996	3.31	0.84	3.26	3.36	57.75	1100	3.14	0.79	3.09	3.18	53.50
	HSLS ${ }^{\text {b }}$	1-4	560	2.90	1.77	2.75	3.05	63.35	590	2.72	0.79	2.66	2.79	57.38
10	CAMP	1-5	640	3.32	0.88	3.26	3.39	58.00	657	3.10	0.79	3.26	3.39	52.50
11	CAMP	1-5	525	3.33	0.82	3.26	3.40	58.25	598	3.14	0.83	3.08	3.21	53.50

International Journal of Gender, Science and Technology, Vol.14, No. 2

	HSLSb	$1-4$	690	2.65	1.50	2.54	2.76	54.98	690	2.52	1.34	2.42	2.62	50.66
12	CAMP	$1-5$	186	3.36	0.77	3.25	3.47	59.00	169	3.24	0.80	3.25	3.47	56.00

Notes. ${ }^{\text {a }}$ Order of datasets according to age from youngest (top) to oldest dataset (bottom); CI = confidence interval; POMP = Percent of Maximum Possible score, ${ }^{\text {b }}$ source: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Table E5
Effects of gender differences, combined effects and results on the heterogeneity of effects in 9th and 10th grade within ethnicities/races (without covariates)

	$9^{\text {th }}$ grade						$10^{\text {th }}$ grade					
	F	$d f$	p	g	S.E.	95\% CI	F	$d f$	p		S.E.	95\% CI
African Americans												
MADICS	--						--					
PSID-CDS	0.01	1, 148	. 92	-. 02	. 16	-. $34 ; .30$. 12	1, 152	. 73	. 06	. 16	-.25; . 38
HSLS ${ }^{\text {b }}$	0.40	1, 100	. 53	-. 06	. 08	-.21; . 09	--			--		
Combined effect				-.05a	. 07	-.19; . 09						
Heterogeneity	Asian Americans $\mathrm{Q}=0.06, \mathrm{df}=1, p=.82,12=0.00$											
Asian Americans												
CAMP	2.53	1, 313	. 11	. 18	. 11	-.05; . 40	8.08	1,226	. 01	. 37	. 13	.11; . 63
HSLS	35.49	1, 50	<. 001	. 47	. 09	.30; . 64	--			--		
Combined effect				. $33^{\text {b }}$. 15	.04; . 62				--		
Heterogeneity			4.34, d	= 1, p	. 04 ,	$\mathrm{I}^{2}=76.97$						--
European Americans												
MADICS	--						--					
PSID-CDS	1.05	1, 194	. 31	. 15	. 14	-.13; . 42	2.47	1, 167	. 12	. 25	. 15	-.06; . 55
CAMP	5.32	1, 308	. 02	. 26	. 11	.03; . 48	1.49	1, 215	. 22	. 16	. 14	-.10; . 43
HSLS ${ }^{\text {b }}$	27.14	1,400	<. 001	. 16	. 03	.10; . 22	--			--		
Combined effect				$.17^{\text {a }}$. 03	.11; . 22				. $20^{\text {a }}$. 10	.00; . 40
Heterogeneity	$\mathrm{Q}=0.68, \mathrm{df}=2, p=.71, \mathrm{I}^{2}=.00$							$\mathrm{Q}=0.16, \mathrm{df}=1, p=.69, \mathrm{I}^{2}=0.00$				
Latinx Americans												
CAMP	24.22	1,2094	<. 001	. 21	. 04	. 12 ; . 30	22.79	1, 1295	<. 001	. 26	. 06	.15; .37
HSLS ${ }^{\text {b }}$	4.75	1, 150	. 31	. 13	. 06	.02; . 25	--			--		
Combined effect				$.18{ }^{\text {a }}$. 04	.11; . 25				--		
Heterogeneity			= 1.07,	= 1, p	$=.30$	$\mathrm{I}^{2}=6.44$						--

[^1]Table E6
Effects of gender differences, combined effects and results on the heterogeneity of effects in 11th and 12th grade within race/ethnicity (without covariates)

	$11^{\text {th }}$ grade						$12^{\text {th }}$ grade					
	F	$d f$	p	g	S.E.	95\% CI	F	$d f$	p	g	S.E.	95\% CI
African-Americans												
MADICS	2.94	1,440	. 09		. 10	-.02; . 35	--			--		
PSID-CDS	0.85	1, 148	. 36	. 14	. 16	-.17; . 46	0.23	1,107	. 63	-. 09	. 19	-.46; . 28
HSLS ${ }^{\text {b }}$	0.03	1, 100	. 86	. 01	. 07	-.12; . 14	--			--		
Combined effect				.07a	. 05	-.03; . 17				--		
Heterogeneity			=1.93,	$=2$,	$=.3$	$\mathrm{I}^{2}=0.00$						--
Asian-Americans												
CAMP	5.67	1, 229	. 02		. 13	.06; . 58	11.27	1, 107	<. 001	. 66	. 20	.27; 1.05
HSLS ${ }^{\text {b }}$	14.49	1,90	<. 001	. 13	. 08	-.02; . 28	--			--		
Combined effect				.18 ${ }^{\text {a }}$. 07	.05; . 31				--		
Heterogeneity			1.56, d	1, p	$=.21$	$2=36.04$						--
European-Americans												
MADICS	0.79	1,246	. 38	. 11	. 13	-. 14; . 36	--			--		
PSID-CDS	7.02	1, 162	. 01	. 43	. 16	.12; . 73	8.81	1,140	<. 001	. 50	. 17	.17; . 83
CAMP	3.16	1, 207	. 08	. 25	. 14	-.03; . 52	8.46	1,48	. 01	. 83	. 30	.25; 1.41
HSLS ${ }^{\text {b }}$	44.90	1,410	<. 001	. 18	. 03	.13; . 24	--			--		
Combined effect				.19a	. 03	.14; . 24				. $58{ }^{\text {a }}$. 15	.29; . 87
Heterogeneity			2.84,	$=3$,	$=.4$	$\mathrm{I}^{2}=0.00$			$=0.96$	$\mathrm{f}=1$	$p=.33$	$\mathrm{I}^{2}=0.00$
Latinx-Americans												
CAMP	14.88	1, 1121	<. 001	. 23	. 06	.11; . 35	2.17	1,353	. 14	. 15	. 11	-.06; . 36
HSLS ${ }^{\text {b }}$	3.14	1, 190	. 08	. 09	. 05	-.02; . 20	--			--		
Combined effect				.15 ${ }^{\text {a }}$. 04	.08; . 23				--		
Heterogeneity			2.99, d	1, p	$=.08$	$2=66.49$						--

Notes. See Table E2.

Figure E1
Gender effects and grade-specific weighted effect sizes (combined effects) from 9th to 12th grade

Notes. Reported results show effect sizes of mean level differences without covariates (i.e., students' performance, family income, and parent education); Source HSLS: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Figure E2
Gender effects and grade-specific weighted effect sizes (combined effects) for AfricanAmericans from 9th to 12th grade

Notes. Reported results show effect sizes of mean level differences without covariates (i.e., students' performance, family income, and parent education); Source HSLS: U.S.

Department of Education, Institute of Education Sciences, National Center for
Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and
First Year Follow-Up.

Figure E3
Gender effects and grade-specific weighted effect sizes (combined effects) for AsianAmericans from 9th to 12th grade

Notes. Reported results show effect sizes of mean level differences without covariates (i.e., students' performance, family income, and parent education); Source HSLS: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Figure E4
Gender effects and grade-specific weighted effect sizes (combined effects) for European-Americans from 9th to 12 th grade

Notes. Reported results show effect sizes of mean level differences without covariates (i.e., students' performance, family income, and parent education); Source HSLS: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Figure E5

Gender effects and grade-specific weighted effect sizes (combined effects) for Latinx-Americans from 9th to 12th grade

Notes. Reported results show effect sizes of mean level differences without covariates (i.e., students' performance, family income, and parent education);
Source HSLS: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

Part F: Comparison of our study with Else-Quest et al. (2013)

Table F1
Comparison of study characteristics of our study with those of Else-Quest et al. (2013)

	Else-Quest et al. 2013	Our study
Dataset(s)	PALS	MSALT, MADICS, CAB, HSLSa, CAMP, PSID
Age of dataset	2012	1988-2011
Place	U.S., Philadelphia	U.S., multiple regions
Number	367	24,280
Grade level	10th graders	9-12th graders
Racial/ethnic groups	African-, Asian-, Europeanand Latinx Americans	African-, Asian-, European- and Latinx Americans
Instrument	Self-concept of ability - How good at math are you? - If you were to rank all the students in your math class from the worst to the best in math, where would you put yourself? - Compared to most of your other school subjects, how good are you at math? They also investigated math/science value beliefs and achievement as dependent variables.	Self-concept of ability - MSALT, CAB; MADICS, PSID and HSLS - Example Item: How good at math are you? (MSALT, CAB, MADICS, PSID) Self-efficacy in CAMP - Example item: How certain are you that you can learn everything taught in math? List of items can be found in the Supplemental Material (Part B)
Covariates	SES (income, parental education, and books in the home)	SES (income, parental education), prior achievement
Statistical Analysis	Multivariate analysis of covariance (MANCOVA)	Analysis of covariance (ANCOVA)
Similarities	U.S. datasets Similar ethnic/racial groups Investigation of gender diff differences within racial/eth	investigated rences across and gender ic groups in math competence

beliefs
, Similar instruments (except self-efficacy)

- Analysis of covariance \rightarrow similar statistical analyses
- Parent education and income as covariates
, Multiple regions within the U.S. (ranging from Southwest to Northeast U.S.)

Differences , Multiple datasets in our study
, Sample sizes
, Different historical time periods (1988-2011)
, Grade level, our study expanded to 9-12th grade
, Prior achievement as covariate

- Our study does not focus on racial/ethnic differences

Notes. ${ }^{\text {a }}$ Source: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, High School Longitudinal Study of 2009 (HSLS:09), Base Year and First Year Follow-Up.

[^0]: ${ }^{1}$ All HSLS-values and values including HSLS-values (i.e. total sample sizes) were rounded to the nearest tens place per IES restricted-use guidelines.

[^1]: Notes. See Table E2.

