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ABSTRACT 
Defining who works in STEM has traditionally relied on top-down categorizations of 

occupations, typically based on predetermined occupational coding schemes. This 

study takes a bottom-up approach and directly surveys a national sample of 

workers in the United States to classify their jobs based on their roles and tasks 

they perform when on the job. With this bottom-up approach, we identify a sizeable 

group of workers who are in the ‘periphery STEM workforce’ who report working in 

STEM jobs but whose occupations fall outside of top-down STEM classifications. 

When including the periphery STEM workforce as part of the broader STEM 

workforce, the gender gap in STEM workforce participation decreases substantially 

because women are more likely to work in the periphery. However, women working 

in the periphery are compensated less than men, a fact that remains invisible when 

using current top-down classification schemes.  
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Who Gets Counted as STEM? A New Approach for  

Measuring the STEM Workforce and its Implications for 

Identifying Gender Disparities in the US Labor Market  
 

INTRODUCTION  
Science, technology, engineering, and mathematics majors and occupations have 

been grouped together and branded collectively as “STEM.” The general concept 
has grown in importance over time, reflecting the reality that gaining skills in 
quantitative and scientific reasoning is critically valuable in today’s economy. As 

technology advances, more and more jobs require STEM skills in the United States 
and abroad (Carnevale et al., 2011; Grinis, 2019; Noonan, 2017). American 

students lag behind their international peers in STEM achievement, and thus the 
United States may be facing long-term disadvantages in filling those jobs with 

American workers (Augustine et al., 2005). Workers with degrees in STEM are more 
likely to be employed and to earn more than their peers with degrees in other 
subjects (Altonji et al., 2012; Baird et al., 2017; Webber, 2014, 2016). As such, the 

classification of STEM is quickly becoming shorthand for workers in the top tiers of 
the economy. Not all socio-demographic groups are equally represented in STEM, 

however. For example, men work in STEM occupations at higher rates than women 
(U.S. Equal Employment Opportunity Commission, 2016). In the United States, this 
gender imbalance has been of particular concern to policy makers.  

 
The validity of these conclusions depends on how exactly STEM is defined and 

measured. As scientific and quantitative tasks spread with the use of computer 
technology, any attempt to define the boundaries of STEM learning and STEM 
employment is somewhat arbitrary. However, the consequences of these definitions 

are not. For example, in the United States, the STEM designation determines which 
universities get federal funding and prestige, and which of their foreign graduates 

get to stay and work in America (Morse & Brooks, 2015). Several states offer tax 
credits and student debt relief for college graduates who stay and work in the state, 
but only if they are employed in STEM occupations (Connecticut by the Numbers, 

2019; Finance Authority of Maine, n.d.). Moreover, the United States’ National 
Science Foundation devotes considerable financial resources toward programs 

aimed at improving the school-to-work STEM pipeline, particularly for 
underrepresented groups such as women. As a result, the measurement of STEM 
not only has consequences for how we characterize the workforce at the population 

level, but also with direct policy implications for individuals.  
 

This paper revisits the measurement of STEM employment, with the motivating goal 
of showing how different measurement approaches can lead to different conclusions 
about gender disparities in the labor force. We describe traditional measures of 

STEM employment based on expert classifications of occupations and contrast them 
with an alternative measure of STEM employment that we create by directly asking 

workers about their jobs. Our approach has distinct advantages for researchers who 
rely on survey data to study the labor force. Asking sample members about their 
jobs gives them an opportunity to classify their occupations based on their daily 

personal experiences at work. Relying on occupational coding schemes to classify 
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workers, as is often done by social scientists, can slough over and obscure 
important details that distinguish the actual tasks of workers both within and across 
different employers and industries. Moreover, many workers form a personal 

identity around their jobs (Gini, 1998), and so directly asking them about their 
occupation reveals insights into how they evaluate their knowledge and their skills 

in relation to their broader role in the economy.   
 
In directly asking workers about their jobs, we are able to document how STEM 

skills are permeating more jobs outside of occupations traditionally considered to be 
STEM. While this measure has a number of limitations which we describe in detail, 

it does reveal some important nuances regarding gender differences within STEM 
that would otherwise be difficult to observe. This paper is not attempting to 
redefine STEM or to endorse any particular measurement approach. Instead, we 

introduce a different measure of STEM employment for the purposes of trying to 
better understand this often used, but somewhat nebulous construct in labor 

research.  
 
In comparing and contrasting our bottom-up STEM classification approach (which 

relies on the direct reports of workers) with other existing top-down classification 
schemes (which rely on predetermined coding schemes derived from expert 

opinions), our analysis makes three distinct contributions. First, it identifies 
discrepancies between how workers view their jobs and how policy makers and 

other administrative decision makers quantify and organize the labor force. Such 
discrepancies can be informative for future efforts aimed at improving the status of 
women in STEM, particularly should they reveal STEM pathways that may be 

commonly pursued by women but are less valued in the labor market. Second, the 
economy is rapidly changing, with technology increasingly infiltrating nearly every 

occupation. Consequently, foundational STEM skills and concepts are quickly 
becoming a prerequisite to labor force participation writ large. Education and labor 
force researchers need to be adept at monitoring and evaluating these changes. 

Static measures of STEM are likely to become outmoded quickly, complicating 
attempts at documenting trends in STEM over time. While we do not endorse any 

one particular approach, our analysis reveals the complexities of operationally 
defining STEM and how these complexities matter when assessing labor force 
outcomes. Finally, much of our understanding about the STEM education-

employment ecosystem comes from surveys of students and workers. Survey 
researchers are still grappling with the most efficient and effective methods of 

asking questions that accurately measure key occupational constructs. Our study 
shows that existing methods to estimate the size of the STEM workforce are quite 
sensitive to differences in operationalization. Collectors and analysts of survey data 

need to be mindful of these differences when attempting to examine the STEM 
labor force. Our analysis highlights the consequences of these differences.  

 
Defining the Periphery STEM Workforce  
Our study takes place in the United States, which leads the world in spending on 

research and development. To date, measurement of the STEM workforce in the 
United States has largely relied on top-down classifications of occupations by 

federal agencies and research institutes. These definitions are based on what 
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typical workers do in each occupation, and thus ignore potential variation in the use 
of STEM skills within an occupation. Concerns about top-down approaches in 
accurately evaluating “leaks” in the STEM school-to-work pipeline have been 

expressed by the United States’ Bureau of Labor Statistics (Xue & Larson, 2015) 
and are manifest in a handful of studies which document how heterogeneous skills 

and roles within the STEM economy contribute to variation in employment 
outcomes (Deming & Noray, 2018; Light & Rama, 2019). To address the limitations 
resulting from strict top-down approaches, we measured STEM jobs from the 

bottom up, by asking workers directly whether the job they do on a daily basis 
consists of STEM-related tasks and functions, using an original survey that we 

fielded to a nationally representative sample of working adults. We then used 
information on the workers’ occupations to construct traditional occupation-based 
STEM classifications, and we contrasted these with workers' subjective job-based 

STEM classifications.  
 

Table 1 shows how an individual worker may sort into existing top-down 

classifications and into our bottom-up classification. Cells (c) and (d) on the second 

row form the official estimate of the STEM workforce produced by the federal 

government and many research institutes, based on occupational classifications. 

This ignores the shaded cell (b), containing STEM workers whose jobs use STEM 

skills and knowledge, but fall outside top-down STEM-classified occupations. We call 

workers in cell (b) the “periphery STEM workforce.” In this study, we pay special 

attention to this segment of the STEM workforce by showing that estimates of the 

size of the STEM workforce and outcomes of STEM workforce participation vary 

depending on whether this segment is included or excluded from the broader STEM 

classification.   

Table 1: Two-Dimensional Measurement of the STEM Workforce  

  

Bottom-up approach  

(based on self-reports) 

    Non-STEM STEM 

Top-down approach 

(based on pre-
determined lists of 

occupations) 

Non-STEM 
(a) Core non-STEM 

workforce 
(b) Periphery 

STEM workforce 

   

STEM 
(c) Periphery non-
STEM workforce 

(d) Core STEM 
workforce 

 

The value of using a bottom-up definition of STEM jobs is its flexibility in identifying 

atypical workers in an occupation. Consider an occupation where 90 percent of the 

workers within that occupation are not involved in STEM-specific tasks. In this case, 

using existing classification schemes, all workers in this occupation would be 

classified as non-STEM. However, this leaves 10 percent of the workers who 

perform STEM tasks and functions but are nonetheless excluded from official 

classifications of STEM workforce membership. Likewise, the STEM workforce 

estimates using occupation-based classifications would include people in the non-
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STEM periphery—individuals whose occupations are typically considered STEM, but 

who do not perform STEM tasks in their specific jobs.  

A risk of using this bottom-up measurement is that some workers may incorrectly 
classify their jobs as STEM. Our approach takes answers at face value, including for 
example from workers employed as social workers, counselors, and librarians 

(traditionally classified as non-STEM occupations). As we discuss in detail below, 
each STEM measure is subject to different sources of error. The bottom-up 

approach suffers from variability in survey respondents’ understanding of the 
meaning of STEM. We attempted to mitigate this with a clear definition in our 
survey prompt. However, these drawbacks are a necessary consequence of using 

individual responses to get a more nuanced view of a construct like STEM 
employment. To address these concerns, we look for indicators that the periphery 

STEM workforce is substantively different from the rest of the traditionally classified 
non-STEM workforce in terms of worker characteristics and in terms of wages. We 

find consistent gender differences: Women are over-represented in the periphery 
STEM workforce, but they are not necessarily better compensated for periphery 
STEM work.  

 
Gender Gaps in STEM  

A large literature documents the existence, causes, and consequences of gender 
wage gaps (Denning et al., 2019). As context for the present study, here we focus 
solely on how STEM contributes to gender differences in careers and compensation.  

The gap in STEM participation by gender begins early, when girls and boys are first 

introduced to STEM subjects in elementary school, and compounds over time (Card 

& Payne, 2021; Fryer Jr & Levitt, 2010; Hill et al., 2010; Jaeger et al., 2017; Key & 

Sass, 2019). By the time they enroll in college, women are less likely than men to 

choose majors in STEM fields, and women who begin as STEM majors are less likely 

than men to persist in those majors through graduation (Arcidiacono et al., 2016; 

Chapa & De La Rosa, 2006; Chesler et al., 2010; Sovero et al., 2021). Conditional 

on graduating with a bachelor’s degree in STEM, women are less likely than men to 

work in a STEM occupation (Baird et al., 2017). As a result of this cumulative 

process across the life cycle, the STEM workforce has been measured to be 

disproportionately male (Gonzalez et al., 2016, 2017).  

These gender differences in the STEM workforce have persisted even as 

longstanding gender disparities in general education have attenuated, and in some 

cases have reversed. For example, women are now less likely than men to drop out 

of high school and are more likely to enroll in and complete college (McFarland et 

al., 2018). Women earn higher grades and have higher post-secondary aspirations 

(Fortin et al., 2015). Although women attain fewer bachelor’s degrees in STEM 

overall, they now comprise a majority of degree recipients in biology, biomedical 

sciences, and psychology (National Center for Education Statistics, 2019). Men, 

however, have maintained an advantage in physics, computer science, engineering, 

and math, across all levels and selectivity of colleges (Schneider et al., 2015). Even 

after earning a STEM degree, processes of “horizontal occupational sex segregation” 

oftentimes operate via labor market sorting, whereby women select into jobs with 

traditional gender-conforming tasks for females and men select into jobs with 
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traditional gender-conforming tasks for males (Charles & Grusky, 2005). Thereby, 

occupational sex segregation is reinforced within sought-after STEM occupations 

that on face-value should improve women’s standing relative to men.  

Women’s advancement in STEM education and in STEM employment has therefore 

been uneven, and we lack definitive explanations for this phenomenon and its 

consequences. Concerns about female representation in STEM have intensified amid 

warnings about a shortage of STEM workers in the United States (Olson & Riordan, 

2012). While gender pay gaps can be partially explained by differences in such 

things as occupational choice, career changes, and temporary exits from the 

workforce (such as for maternity leave and childrearing), women still earn less than 

men after accounting for these factors (Graf et al., 2018; Kronberg, 2020; Moore, 

2018; Petrescu-Prahova & Spiller, 2016). The gender composition of the workforce 

has implications for wages and benefits as well (Erlandsson, 2019; Levanon et al., 

2009). In this paper, we put forth the hypothesis that a significant proportion of 

women’s participation in the STEM workforce, and differences in compensation, is 

obscured by how the STEM workforce is operationally measured. The next section 

details existing definitions and measurements, as well as our new measure.  

  

Current Approaches to Measuring the STEM Workforce in the United States  

Our study is based in the United States, which, as a nation, invests heavily in 

research and development. Our analyses are “United States-centric” by design, but 

they highlight broader challenges that all developed economies face as they grow 

and manage their STEM workforces. The main federal vehicles for research and 

development in the United States include the Department of Defense, the National 

Institutes of Health, and the National Science Foundation. Of particular relevance to 

our study is the National Science Foundation, which is responsible for developing a 

pipeline of well-trained STEM workers to support the nation’s interests. The National 

Science Foundation provides direct support to schools, colleges, and universities to 

build and to enhance their STEM curricular offerings, as well as to employers and 

community stakeholders to develop local and regional STEM workforce development 

initiatives. Additionally, the National Science Foundation funds research and 

development across all fields of study within the family of STEM disciplines. As a 

result, all federal agencies, most state and local governments, and many research 

institutes follow the Foundation’s directives and guidelines regarding STEM.  

The STEM acronym originated within the National Science Foundation in the 1990s 

as “SMET,” before being rearranged into the existing pronunciation (Lund & Schenk 

Jr, 2010). This change foreshadowed additional efforts to refine and strengthen the 

concept as the economy evolved and the demand for STEM skills intensified. This 

paper compares and contrasts the two most widely used methods of classifying 

STEM employment in the United States—one from the U.S. Census Bureau and one 

from the Brookings Institution. Additionally, it introduces a third method that we 

have developed to potentially compensate for some of the shortcomings in the first 

two methods. All three methods have subtle differences that have implications for 

who is and who is not considered part of the STEM workforce.  

The U.S. Census Bureau classification comes from the Standard Occupational 

Classification Policy Committee, a consortium of nine federal agencies charged with 
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standardizing occupational definitions. In the United States, all possible occupations 

are given a standard numerical code. To support the National Science Foundation’s 

efforts at expanding the STEM workforce, in 2012 the committee recommended 

that workers in 62 of the 539 standard occupations should be defined as STEM. The 

Census classification is widely used throughout federal agencies and by many 

researchers to officially measure the size of the STEM workforce. However, it relies 

on predetermined subjective judgments about occupational categories, which can 

be quite broad in a number of cases. As a top-down approach, it does not consider 

how workers directly evaluate their roles and tasks performed on the job.  

An alternative measure was developed by the Brookings Institution, one of the 

leading public policy research institutes in the United States. A 2013 Brookings 

Institution report categorized tasks based on the input of workers and researchers, 

and then calculated a rating for each occupation according to its component tasks 

(Rothwell, 2013). The Brookings Institution approach uses the Department of 

Labor’s Occupational Information Network (O*NET), which classifies the types of 

knowledge required for work tasks. For each occupation and for each of the four 

STEM fields (i.e., science, technology, engineering, and mathematics), Rothwell 

created a 7-point score indicating the level of knowledge required from that STEM 

field for that occupation’s component tasks. Occupations with a knowledge score of 

at least 1.5 standard deviations above the mean in at least one STEM field were 

classified as “high STEM occupations.” A high STEM occupation could be “high” in 

mathematics, but potentially “low” in science, technology, and engineering. 

Combining the scores across all four fields of STEM, occupations with a knowledge 

score of at least 1.5 standard deviations above the mean were classified as “super 

STEM” occupations.  

The Brookings approach results in a broader definition of STEM, uncovering what 

they called the “hidden STEM economy” of STEM jobs requiring less than a 

bachelor’s degree. The government has directed far less money to build the 

educational pipeline to these “hidden” STEM jobs, which are concentrated in 

manufacturing, healthcare, and construction industries.  

Our approach to classifying the STEM workforce was to directly survey workers and 

ask if their job is STEM. The approaches used by the Census Bureau and by 

Brookings assess STEM qualities at the occupation level. The Bureau of Labor 

Statistics defines an occupation as “a set of activities or tasks that employees are 

paid to perform. Employees that perform essentially the same tasks are [grouped] 

in the same occupation, whether or not they work in the same industry.” (Bureau of 

Labor Statistics, undated) We instead classify individuals based on their job, where 

we define a job as a match between a worker and a firm, or the specific work 

arrangement of a given individual including the exact tasks they perform. Two 

different workers in the same occupation would have different jobs and may 

perform different tasks. With our approach, we are most interested in how workers 

personally assess the STEM-nature of their jobs.   
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RESEARCH QUESTIONS AND EMPIRICAL APPROACH  

Using the three approaches to measuring the STEM workforce described in the 

previous section as an empirical foundation, we empirically address the following 

three research questions:  

1. How does self-reported STEM job classification (i.e., a bottom-up approach) 

differ from the existing occupation-based classifications (i.e. top-down 

approaches)?  

2. Are women and men differentially sorted into the periphery STEM workforce?  

 

3. Conditional on worker and job characteristics, are there any observed 

differences in compensation for working in the periphery STEM workforce?  

Data  

To answer our three research questions, we analyze data from the RAND American 

Life Panel (ALP), a nationally sampled online panel that permits generalization to 

the non-institutionalized population of adults in the United States. The panel 

receives periodic surveys on different topics, as well as a standard module on 

household characteristics fielded every quarter. Technical documentation provides 

additional information on the ALP sample, weighting, and data collection methods 

(Pollard & Baird, 2017).  

In the summer of 2017, the authors developed and administered the following 

question to ALP members as part of survey #MS480:  

The next few questions are about your schooling and its relationship to your 

work experiences. Specifically, we are going to talk about school and work 

experiences in STEM—an acronym for "Science, Technology, Engineering, and 

Mathematics.” This includes all sciences, from earth sciences (example, geology 

and astronomy) to life sciences (example, biology and chemistry) to social 

sciences (example, psychology, and political science). Technology includes all 

forms of computer science and network applications.  

Are you currently working in a STEM job? Note that this relates to the tasks 

you do, and not the industry you work in. For example, an engineer for a 

bioengineering research firm would be in a STEM job, but an administrative 

assistant at the same bioengineering research firm would NOT be in a STEM 

job.  

In the survey, respondents also provided their occupation, allowing us to classify 

them by both the Census and Brookings approaches. The occupation question uses 

a dropdown menu populated by the Standard Occupation Codes (SOC) which 

prompts the respondent to choose the occupation that best resembles their own.  

ALP survey #MS480 received 3,569 responses, a response rate of 82 percent 

among those in the randomly sampled population of the ALP. Given our focus on 

the employed workforce, we limited the sample to adults under the age of 65 who 

were employed at the time of the STEM question, and who provided an occupation 

code, leaving 1,694 responses.  



International Journal of Gender, Science and Technology, Vol.13, No.3 
 

262 
 

ALP survey #MS480 contained only a broad set of occupational codes, consisting of 

23 major Standard Occupation Codes and no data on wages, limiting our ability to 

compare STEM jobs with STEM occupations and to measure compensation. To 

address this problem, we merged ALP survey #MS480 with ALP survey #MS436, 

one of the periodic standard modules administered in the summer of 2015 which 

included a question asking sample members to report their occupation. In all, 1,494 

of our sample members reported an occupation in the earlier survey, and 1,055 of 

them maintained the same broad occupation between surveys. We excluded those 

whose broad occupation changed, because their 2015 occupation was unlikely to 

reflect their 2017 occupation. We predict that the 2015 occupation is accurate in 

2017 for about 98 percent of the remaining individuals. Appendix A provides 

supporting details. The final 1,055 respondents are weighted to match the Current 

Population Survey (CPS), which is a monthly nationally representative survey used 

by the U.S. Department of Labor to calculate unemployment rates. Appendix B 

describes the weighting procedure. Shrinking the sample size from 1,819 down to 

1,055 slightly increased the rate of self-reported STEM work, but otherwise there 

were no major differences between the matched analysis sample and the broader 

sample of respondents on observed socio-demographic characteristics.  

Wages come from responses in the 2015 survey to annual compensation from the 

sample member’s primary job, the typical hours worked per week, and the number 

of weeks worked (including paid time off) per year. Details on corrections and 

adjustments to the wage data appear in Appendix C. Respondents also indicated 

whether their job provided paid time off, health insurance, and retirement benefits. 

Non-wage compensation is an important aspect of total compensation, which if 

ignored can misstate the true value of a STEM degree as it is applied in different 

work settings (Baird, 2017). We use the benefits questions to estimate non-wage 

compensation in dollar terms, using fringe rates from the Bureau of Labor Statistics 

(Bureau of Labor Statistics, 2016). The procedure is described in Appendix D.  

Table 2 presents the summary statistics for our sample, where overall 

demographics match the weighted Current Population Survey and thus approximate 

national averages: 45.7 percent of workers are women, 30.1 percent are racial 

minorities, and 37.6 percent have at least a bachelor's degree. About 15 percent of 

total compensation comes from benefits. The sample is representative of the 

current workforce, with multiple generations and varying gender demographics that 

are obscured by aggregates in this table but are explicitly included in our regression 

analyses.  

Table 2 gives us our first look at the size of the STEM workforce, which ranged from 

5.7 percent of workers using the Census approach up to 26.5 percent of workers 

using Brookings approach (with “high STEM” and “super STEM” combined). 

Meanwhile, our approach using self-reports yielded an estimate in between the two, 

at 19.8 percent of workers.  
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Table 2: Summary Statistics for the RAND American Life Panel (ALP)  

 

Standard Minimum Maximum  

 Variable  Mean deviation  value  value  

Women (%)  45.7       

Racial minority (%)  30.1       

Highest education: Bachelor's degree  20.3       

Highest education:  

Graduate/professional degree  17.3       

Age  42.6  11.7  21.0  64.0  

Years working for current employer  8.3  8.4  0.0  50.0  

Family income ($1,000s)  90.3  60.4  2.5  250.0  

Hourly wage ($)  35.6  99.2  7.3  1,302.1  

Non-wage compensation/hour ($)  5.9  7.6  0.0  113.0  

STEM, Census approach (%)  5.7       

High STEM, Brookings approach (%)  14.7       

Super STEM, Brookings approach (%)  11.8       

STEM, Brookings approach (%)  26.5       

Self-reported STEM, our approach (%)  19.8       

 

N = 1,055          

Source: RAND Corporation’s American Life Panel, United States  

Note. Estimates weighted to approximate the 2015 Current Population Survey.  

  

 Empirical Approach  

The first research question assesses the size of the periphery STEM workforce. To 
answer this question, we present cross-tabulations and descriptive figures from our 
survey data based on the alternative STEM classifications.  

The second question assesses the composition of the periphery STEM workforce. To 

answer this question, we first take each occupation and conduct a t-test for the 

probability of being in that occupation for the two samples of those in the STEM 

periphery and all other workers. We do this separately by gender and present a 

sorted list of the top 10 occupations with presence in the STEM periphery. Next, we 

use linear regression to predict the probability of being in the STEM periphery 

(conditioning the sample on those in the STEM periphery or core STEM) on socio-
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demographic characteristics to determine which characteristics predict STEM 

periphery, and how the gap between men and women changes when including 

other covariates.  

Finally, the third question serves to validate the market importance of the periphery 

versus core STEM workforce concepts. To do so, we estimate regressions predicting 

the log of hourly wages, log hourly value of non-wage compensation, and the log 

total of the two, controlling for individual characteristics and including indicators for 

STEM classifications of different types by gender. The base reference group for each 

gender is men in the core non-STEM workforce.  

To address the classic selection bias in observing wages imposed by selection into 

working, we use a Heckman correction in a two-stage model. The first stage 
predicts selection into paid employment, and the second stage predicts wages 

conditional on working. We use the number of dependents and the number of 
dependents interacted with gender as predictors of employment in a first-stage 
equation, along with the covariates of the second stage. These are common choices 

for the first-stage excluded instruments in a Heckman selection regression, with the 
assumption that women with dependents are more likely to not be in the labor 

force (as some choose to primarily raise their children while outside of the labor 
force), while men are more likely to be in the labor force when having dependents 
(feeling additional pressure to provide for their dependents). The key assumption is 

that having dependents has no direct effects on earnings outside of the effect 
through entry into the labor force. The conclusions are similar regardless of 

whether or not we use a two-stage Heckman selection model or a simple OLS 
model.  
  

RESULTS  
Size of the Periphery STEM Workforce  

Table 3 provides two empirical implementations of the comparisons highlighted in 
Table 1. The four cells within each of the two panels sum to 100 percent. The 
periphery STEM workforce is shaded in gray. The total size of the periphery STEM 

workforce missed by traditional approaches was 15.8 percent of all workers by the 
Census approach, and 9.4 percent of all workers by the Brookings approach. These 

are substantial proportions of workers, and particularly of STEM workers. There 
were more workers in the Census-based STEM periphery (15.8 percent) than in the 
core STEM (4.0 percent) or even the total official STEM workforce (4.0 percent plus 

an additional 1.7 percent in the other off-diagonal). The Brookings-based STEM 
periphery (9.4 percent) was approximately the same size as the core STEM 

workforce (10.3 percent). All proportions are statistically different from zero at 
p<0.001.  
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Table 3: The Periphery STEM Workforce  

    Our approach 

    Non-STEM STEM 

Census 

approach  

Non-STEM 78.5% (1.3%) 15.8% (1.1%) 

STEM 1.7% (0.4%) 4.0% (0.6%) 

Brookings 
approach 

Non-STEM 64.0% (1.5%) 9.4% (0.9%) 

STEM 16.2% (0.9%) 10.3% (0.8%) 

Source: RAND Corporation’s American Life Panel, United States 

Note. Estimates weighted to approximate the 2015 Current 
Population Survey. The gray cells indicate the periphery STEM 

workforce. Standard error of mean in parentheses. 

Composition of the Periphery STEM Workforce  

We evaluated gender parity in three different groups of workers: all workers, 
workers with any post-secondary credential in a STEM field (including associate 
degrees, certificates, and bachelor’s degrees), and workers with a bachelor's degree 

or higher in a STEM field. To do so, we plotted the estimated percentage of women 
in the STEM workforce using the different measurement approaches (Figure 1). As 

shown in Figure 1, women were better represented in the STEM workforce as 
education increased, reflecting the overall trend of women advancing in some fields 
and acquiring more high-level degrees than men.  

 
Across all levels of education, there were clear differences between our self-

reported job measure and the top-down approaches used by the Census and 

Brookings. When using the Census definition or either of the Brookings’ definitions, 

there were significantly fewer women in STEM at all education levels. Using our 

bottom-up approach, we find near parity between the genders, especially among 

those with any STEM postsecondary credentials (50 percent women in the middle 

gray bar).  
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Figure 1. Gender composition of STEM workforce by level of education and 

classification approach. 
Source: RAND Corporation’s American Life Panel, United States  
Note. Estimates weighted to approximate the 2015 Current Population Survey. Whiskers 

denote 95% confidence intervals around the estimates.  

  

To understand the nature of these discrepancies, Table 4 reports the top 10 most 

common occupations for men and women in the periphery STEM workforce, 

contrasted with all other workers. The most common occupations in the STEM 

periphery are not necessarily the most common occupations overall. For example, 

11.1 percent of all women in the periphery STEM economy were working in 

“Miscellaneous Healthcare Support Occupations,” while only 3.8 percent of women 

not in the STEM periphery in the sample worked in this occupation group.  

For women, the industries that contributed most to discordance across classification 

schemes were in healthcare and education. Healthcare support workers, social 

workers, counselors, educators, dental hygienists, and librarians all appeared in the 

periphery because they reported using STEM skills outside traditional STEM 

occupations. For men, the occupations most represented in the periphery seem to 
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be comprised of a different set of occupations, such as managers, post-secondary 

instructors, law clerks, and salespersons.  

Some occupations here at first glance seem less objectively STEM-related: for men, 

truck drivers and for women, customer service. Our approach is to take answers at 

face value. We cannot distinguish between classifications that might be considered 

a misunderstanding of the survey question, and classifications that truly represent 

periphery workers using STEM skills in their jobs. Without additional insight into 

respondents’ interpretation of STEM, we assume that women and men are subject 

to the same sources of potential measurement error. We discuss the implications of 

such measurement error when contrasting the advantages and disadvantages of 

each classification approach in our conclusion.  

Beyond gender differences, we sought to identify other characteristics associated 

with working in the STEM periphery. To do so, we estimated regressions using the 

sample of STEM workers broadly defined, with a binary outcome indicating whether 

the STEM worker is in the periphery or in the core. Model 1 includes a single 

parameter for gender. Model 2 adds in a set of demographic characteristics. Model 

3 interacts these demographic characteristics with gender to see if any traits are 

more predictive for being in the periphery STEM workforce for women than for men. 

The results from these linear probability models are presented in Table 5. The 

coefficients can be interpreted as the increased probability, in percentage points, of 

being in cell (b) rather than cell (d) in Table 1.  

Across all models, gender is the most salient characteristic predicting membership 

in the STEM periphery among STEM job holders. The gender gap of 23 percentage 

points in Model 1 widens to 30 percentage points when individual characteristics are 

added in Model 2. We also find that being a minority increases the probability of 

being in the periphery substantially, while having a STEM degree decreases the 

probability substantially. When we additionally interact characteristics with gender 

(Model 3), we do not find any statistically significant interactions between gender 

and these demographic characteristics. However, the signs and magnitudes of the 

coefficients suggest that the demographic associations are even stronger for men 

than for women: minorities and non-STEM educated workers are less likely to be in 

periphery STEM jobs.  
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Table 4: Most Common Occupations for STEM Workers in Descending Order of 

Periphery STEM Prevalence, by Gender  

  
Women  

Healthcare Support Occupations  11.1%  3.8%  0.006  

Social Workers  11.0%  0.5%  <0.001  

Counselors  10.7%  1.2%  <0.001  

 Securities, Commodities, and Financial Services    7.0%  0.0%  <0.001  

Dental Hygienists  5.7%  0.0%  <0.001  

Secondary School Teachers  5.5%  0.3%  <0.001  

Miscellaneous Teachers and Instructors  4.4%  3.2%  0.589  

Librarians  4.2%  0.2%  <0.001  

Customer Service Representatives  4.1%  2.9%  0.583  

Teacher Assistants  

Men  

2.7%  1.3%  0.366  

Driver/Sales Workers and Truck Drivers  19.2%  4.9%  0.001  

Education and Library Science Teachers, Post-

secondary  

10.7%  0.2%  <0.001  

Marketing and Sales Managers  9.1%  1.0%  <0.001  

Lawyers and Judicial Law Clerks  8.0%  2.1%  0.036  

Building Cleaning Workers  6.3%  1.5%  0.052  

Securities, Commodities, and Financial Services  5.8%  0.1%  <0.001  

Computer Control Programmers and Operators  4.8%  0.0%  <0.001  

Dispatchers  4.3%  0.0%  <0.001  

Customer Service Representatives  3.9%  1.5%  0.303  

General and Operations Managers  3.5%  1.2%  0.263  

Driver/Sales Workers and Truck Drivers  19.2%  4.9%  0.001  

 

Source: RAND Corporation’s American Life Panel, United States  

Note. Estimates weighted to approximate the 2015 Current Population Survey.  

  

  

  

  

  

  

STEM  
Periphery   

All  
others   

p - value  
for diff.   
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Table 5: Parameter Estimates from Linear Probability Models Predicting STEM 

Periphery Membership Relative to Core STEM Membership  

 

(1)      (2)             (3)  

Observations  267  267  267  

R-squared  0.053  0.230  0.235  

* p < 0.10 ** p < 0.05 ***p < 0 .01   

 

Source: RAND Corporation’s American Life Panel, United States  

Note. Estimates weighted to approximate the 2015 Current 

Population Survey. Robust standard errors in parentheses.  

 

Male  
-0.230** 

(0.091)  

0.297*** 

(0.075)  

-0.259  

(0.202)  

Age  
  

  

-0.005  

(0.003)  

-0.005  

(0.005)  

Highest education: BA/BS  
  

  

-0.001  

(0.097)  

-0.014  

(0.143)  

Highest education: graduate degree    

  

 0.148  

(0.096)  

 0.159  

(0.131)  

Racial minority  

    

0.306***  

  

0.233**  

   (0.089)  (0.107)  

STEM degree  
  

  

0.324*** 

(0.095)  

-0.263* 

(0.157)  

Male × age  
  

  

  

  

-0.001  

(0.007)  

Male × highest education: BA/BS  
  

  

  

  

 0.023  

(0.193)  

Male × highest education: graduate 

degree  

  

  

  

  

-0.023  

(0.191)  

Male × racial minority  
  

  

  

  

 0.124  

(0.164)  

Male × STEM degree    

  

  

  

-0.086  

(0.196)  

Constant  

  

0.609***  

  

0.763***  

  

0.728***  

 (0.056)  (0.111)  (0.162)  
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Compensation in the Periphery STEM Workforce  

It is unclear the extent to which women’s overrepresentation in the periphery STEM 

workforce should be concerning. Under our definition of STEM work, including the 

periphery STEM workforce as part of the broader STEM workforce significantly 

closes the gender gap in STEM employment at all levels of education. But the 

potentially good news of the equitable STEM work patterns across gender may still 

be concerning if women do not earn higher wages and benefits using the same 

skills. It is therefore important to examine how the women who closed the STEM 

participation gap via their acquisition of jobs within the STEM periphery are 

compensated for their work.  

Table 6 presents the regression results of compensation from our models estimated 

with the Heckman corrections. For both women and men, working in the core STEM 

workforce (STEM job in a STEM occupation) is associated with higher earnings, 

higher non-wage compensation, and higher total compensation than working in the 

non-STEM core. Women receive a larger upgrade in wages moving from the core 

non-STEM workforce to the core STEM workforce, and both genders ended up 

equally well-off relative to the excluded group of men working in the non-STEM core 

(adding the coefficients on female and female core STEM). Using a standard 

transformation, the advantage of 0.3 log points is equivalent to about a 40 

percentage-point increase in earnings accruing to core STEM workers (Kennedy, 

1981).  

For men, there is a significant wage increase for those working in any part of the 

STEM workforce, including the periphery STEM. However, this is not true for 

women, where there are only statistically significant gains if they work in STEM jobs 

in core STEM occupations. Therefore, the substantial number of periphery STEM 

women workers do not appear to be reaping a benefit from using their STEM skills 

and training in non-STEM occupations. On average, women only benefit from using 

their STEM skills and training if they work in traditionally classified STEM 

occupations.  
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Table 6: Parameter Estimates from OLS Models Predicting Compensation

 

  Log wage 
Log non-

wage 
Log total 

Female -0.212** -0.113 -0.233*** 

  (0.0827) (0.126) (0.0856) 

Male, periphery non-STEM  0.304***  0.217  0.245* 

  (0.108) (0.221) (0.125) 

Male, periphery STEM  0.192*  0.188  0.190 

  (0.103) (0.142) (0.118) 

Male, core STEM  0.348***  0.341**  0.336*** 

  (0.0989) (0.136) (0.102) 

Female, periphery non-STEM  0.129  0.188  0.156 

  (0.108) (0.151) (0.139) 

Female, periphery STEM  0.0506  0.0286  0.0284 

  (0.0826) (0.141) (0.0938) 

Female, core STEM  0.505***  0.463***  0.529*** 

  (0.0726) (0.0940) (0.0814) 

Highest education: BA/BS  0.396***  0.166*  0.388*** 

  (0.0684) (0.0997) (0.0657) 

Highest education: graduate degree  0.578***  0.326***  0.568*** 

  (0.0741) (0.102) (0.0715) 

Racial minority -0.258***  0.273** -0.224** 

  (0.0928) (0.118) (0.0941) 

Potential work experience 
 

0.0372*** 

 

0.0615*** 

 

0.0476*** 

  (0.0079) (0.0151) (0.0091) 

Potential work experience squared 
-

0.0006*** 

-

0.0012*** 

-

0.0008*** 

  (0.0002) (0.0003) (0.0002) 

Constant  2.317***  1.558***  2.435*** 

  (0.104) (0.178) (0.106) 

Observations 1,067 794 949 

R-squared 0.190 0.062 0.181 

* p < 0.10     ** p < 0.05     ***p < 0 .01       

Source: RAND Corporation’s American Life Panel, United States 

Note. Estimates weighted to approximate the 2015 Current Population Survey. 

Robust standard errors in parentheses. 
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DISCUSSION AND CONCLUSION  

Our approach to measuring the STEM workforce takes into consideration that the 

economy increasingly requires workers who are proficient in the application of 

technology, data science, and digital communication, and who possess quantitative 

analysis skills and complex problem-solving skills. These workers, often from STEM 

educational backgrounds, can apply their STEM skills and training to a number of 

jobs outside of traditionally defined STEM occupations. To locate and quantify these 

workers, we fielded a survey to a nationally representative sample of Americans. To 

conclude this study, we discuss what might be driving the differences between our 

measurement technique and existing techniques, and what matters for 

understanding gender disparities in the STEM labor force.  

Measuring the STEM Workforce in a Changing Economy  

Each time a new measure of the STEM workforce arises, it illuminates new aspects 

of the economy, but comes with its own set of limitations. The Census Bureau’s 

definition, based on expert opinion, categorically defines broad occupation 

categories as either STEM or not STEM. Recognizing this limitation, the Brookings 

Institution expanded significantly on the Census Bureau definition, classifying many 

more occupations as STEM. The Brookings definition used an underlying index of 

skills and knowledge, providing a numerical justification and a natural way to set 

thresholds defining additional categories such as high STEM and super STEM.  

There are other complementary approaches as well. One study following the Census 

top-down occupation-based approach included 12 additional occupations, such as 

healthcare practitioners and technicians (Funk & Parker, 2018). A recent study 

complements the three approaches in this paper by building up a task-based 

definition of STEM jobs (Grinis, 2019). That study used keywords from job postings 

in the United Kingdom to show that around 15 percent of job postings outside STEM 

occupations could be classified as STEM jobs. Postings requiring STEM skills offered 

higher wages, regardless of whether the job was in a STEM occupation or not.   

Like the United Kingdom study, we find that STEM skills used outside of STEM 

occupations are compensated, though primarily for men. Supporting the Brookings 

approach, we find that workers in periphery STEM jobs have higher Brookings STEM 

ratings as opposed to core non-STEM jobs, indicating they would be closer to being 

counted as STEM even without the information gleaned from our survey. Like the 

expansions to the Census approach, our periphery concept tends to include 

healthcare workers. Our measure is more than just another expansion of STEM, 

though. The size of the STEM workforce under our measure is smaller than for the 

Brookings measure.  

Each of the measures is subject to measurement error between the imperfect 

categorization of real-world occupations, jobs, or tasks, and some theoretical true 

encapsulation of science, technology, engineering, and mathematics. Amongst the 

three approaches, our measure is the most subject to errors in understanding and 

interpretation across individuals. For example, consider a financial services agent, 

an occupation which accounts for seven percent of women and six percent of men 

in the periphery STEM workforce. Such workers may consider themselves as doing 
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STEM jobs because STEM seems smart and important, and so they may want to 

appear more favorably on a survey. Alternatively, workers could choose different 

thresholds for what constitutes the "STEM-like nature" while looking at the exact 

same job. Lastly, workers could misunderstand the prompt, somehow. For example, 

a financial services agent filling out the survey may quickly scan the question, see 

the word “math”, and respond affirmatively because there is some basic math 

required to perform their job. A social worker might make the same mistake, 

steering us away from some theoretical encapsulation of STEM. These types of 

errors would threaten our main findings if it they are likely to occur differentially 

between men and women and differentially across occupations. To attenuate this 

error, we recommend that future research eliciting individual responses 

experiments with the question wording, question placement, and other prompts or 

instructions to infer whether respondents’ understanding of the question could be 

driving the results.  

The Brookings measure is subject to errors at three levels: in choosing how STEM-

involved a broad set of tasks are, choosing how those tasks are aggregated into 

occupations, and choosing the cut-off for what makes an occupation STEM or not. 

To the extent that the decentralized errors in each level of the Brookings measure 

(and in our measure) average out across raters, the point estimates should be 

unbiased. However, the variance in small samples may be large. The Census 

Bureau definition, by contrast, may be biased without a clear mechanism to balance 

it out. For the Census measure, the measurement error is limited to a small set of 

decision makers, and therefore risks their opinions being out of date, being 

unconsciously gender-biased based on cultural norms, or being too limited by the 

existing set of SOC codes.  

Given rapid changes in technology, STEM work will continue to be a moving target 

(Deming & Noray, 2018). Determinations of STEM occupations will need to be 

updated on regular basis. Updating the Census Bureau measure potentially faces 

the lowest cost, as the fewest people are involved. Either the Brookings or Census 

measures could be updated using existing data, by drawing different boundaries. 

Updating our self-reported measure requires new data collection, because there is 

only one boundary in the yes/no question, which cannot be redrawn without 

additional information.  

A measure based on job postings is perhaps the most flexible and updatable, as it 

responds flexibly to supply and demand in the labor market: new jobs are 

constantly being posted, and more and more of them are being posted online 

(Grinis, 2019). The limitations of machine learning approaches relative to our 

method are that we analyze actual workers in accepted jobs, rather than postings 

that may represent the creation of zero (or many) job matches, and thus, may turn 

out to pay different wages for different tasks than the posting suggests (Grinis, 

2019; Ikudo et al., 2019). Additionally, because job postings are typically written 

by employers and not employees, our approach is likely more sensitive to variation 

in the tasks, assignments, and work arrangements that workers encounter day-to-

day.  
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Implications for Understanding Gender Gaps in STEM  
Why do we observe a higher concentration of women in the STEM periphery? We 

speculate that there are two sets of factors: external forces acting to limit workers’ 
choices, and internal preferences motivating workers’ choices. Specifically, women 

might be less likely to work in core STEM jobs if they face discrimination or are less 
welcome in STEM job environments, or they may be less likely to work in core 
STEM jobs if they tend to prefer the tasks in the periphery. One study found that 

preferences for tasks may lead to changes in gender balance, which may be 
reinforced by shifts toward non-wage compensation more valued by women (Lee & 

Thompson, 2019). The STEM periphery may serve to create “horizontal 
occupational sex segregation” within the STEM workforce, whereby both women 
and men land similar STEM occupations but perform quite different tasks, with 

different levels of compensation. Our research adds growing evidence into how 
women remain disadvantaged in the labor force, even when attaining the same 

level of education and landing similar jobs as men.   
 
These considerations are particularly important as efforts within the United States 

to improve the status of women in STEM fields, and occupations are central to 

improving workforce diversity and inclusion. For example, the United States has 

invested heavily via its National Science Foundation to promote pathways into STEM 

careers for young women. However, as our analysis shows, STEM careers are quite 

heterogenous, with varying applications of STEM skills and knowledge and 

consequently, unequal labor force outcomes. If the goal of these efforts is to narrow 

the gender wage gap, more attention needs to be paid to ensuring that young 

women have opportunities to acquire positions within the core STEM workforce 

rather than the periphery.  

For proponents of policies to promote equitable outcomes across workers, our 

measure reduces the pressure to induce more women into STEM work, while 

increasing the pressure that STEM-trained women receive equal compensation in 

the jobs where they use their STEM skills. Policies to promote holding STEM jobs, 

such as tax credits and loan forgiveness, could tip the net benefit of working in 

STEM further toward men if these policies only reward the types of STEM jobs men 

choose. Alternatively, if STEM skills were more equally rewarded wherever they are 

used, including in the periphery, then gender wage gaps could potentially be 

narrowed.  
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Appendix A: Discussion on the two-year gap in the two ALP surveys  

We link two surveys that the same individuals answered two years apart, drawing 

one measure of STEM work from each. We restrict the sample to respondents who 

were employed in both periods, and who worked in the same broad occupation 

category in both periods. One risk is that the respondents changed occupations 

within the broad category during those two years, generating some of the 

mismatches we observe.  

In this Appendix we use a national panel sample to estimate the proportion of 

people whose 2015 occupation was no longer accurate in 2017 although they 

remained in the same broad occupation category. We investigate occupation 

switches using the Survey of Income and Program Participation 2014 panel. This 

survey yields a large sample of individuals in a panel, so that we can observe 

changes over time during roughly the period of our sample. About 20 percent of 

individuals switch between 23 broad occupation groups across two years. This is 

higher than the 11 percent we find for the ALP sample. Among workers who 

remained in the same broad occupation group, 9 percent changed occupation. Most 

relevant for our paper, the percentage of those who switch STEM occupation status 

is between 1 and 2 percent of the sample. To the extent that our data include more 

stability as suggested by fewer broad occupation switches, we anticipate no more 

than 1 to 2 percent of our sample switched STEM occupation status from 2015 to 

2017.  

Table A1: Percentage of STEM switchers across two years in SIPP, overall 

and for subsample who remained in same broad occupation group.  

  

% Switching occupation group  

All  

Same 

occupation 

group  

19.4%  -  

% Switching occupation  26.6%  8.9%  

% Switching Brookings high STEM classification  9.7%  2.3%  

% Switching Brookings super STEM 

classification  
7.5%  1.9%  

% Switching Census STEM classification  5.6%  1.2%  

SIPP person-wave observations  75,243  60,609  

Note. Data based on 2014 Survey of Income and Program Participation,  

United States. All: workers with occupations observed across two years. 

Same occupation group: broad occupation group the same across two 

years.  
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Appendix B. Discussion of weighting and imputing the ALP data  

In order to make comparisons with other data sets and have a nationally 

representative sample to make statements on the overall representation of women 

in the national STEM economy, we generated weights using a raking algorithm, 

matched against the 2015 Current Population Survey. For this study we matched on 

gender by race/ethnicity cell (non-Hispanic white, non-Hispanic black, Hispanic, 

other); gender by age in four age groups; gender by education level; household 

income by household size; as well as gender by U.S. Census occupation STEM 

definition and by Brookings Institution STEM definitions. More details on the general 

weighting approach in the ALP are in the technical documentation (Pollard & Baird, 

2017). There are some missing observations for some demographic variables. In 

the regressions we use imputation to fill in these missing control variables.  

 
Appendix C. Accounting for missing hourly wages for workers  
Our calculation of the hourly wage is based on a response to the question of the 

annual value of earnings from their primary job, their average hours worked per 
week in their primary job, and their typical number of weeks worked per year in 

their primary job. This, in some cases, led to unreasonably small hourly wages 
close to zero. These typically happened by respondents reporting annual total 
earnings of a value less than $1,000 while still working over 30 hours a week and 

over 40 weeks a year. We consider these cases as mistaken responses. We set 
equal to missing any calculated hourly wage below $3/hour and create inverse 

probability weights for this missingness by doing a logistic regression of not missing 
(amongst those working) on gender, age, baseline family income, and highest 
education level. We multiply these IPWs by the sample weights based on the CPS to 

get the final weights for the compensation regressions. Hourly wages above $3 but 
below the federal minimum wage of $7.25 were set to $7.25.  

 
Appendix D. Estimating the value of non-wage benefits  
The United States’ Bureau of Labor Statistics reports the results of the National 

Compensation Survey, wherein estimates are given about how to value fringe non-
wage compensations as percentages of the wages (Bureau of Labor Statistics, 

2016). We use these estimates to calculate the value of non-wage benefits of 
workers in our study according to their response to three questions: whether their 
job has paid time off, whether their job provides insurance, and whether their job 

provides retirement benefits. As paid time off and retirement benefits are functions 
of the person’s pay rate, we calculate the value as 0.07 times the hourly wage for 

paid time off (reflecting BLS 7 percent value of the same) and 0.054 times the 
hourly wage for retirement benefits (reflecting BLS 5.4 percent value). For 
insurance, this is not typically directly a scaling of the earnings, so we use the 8.7 

percent value of insurance from BLS, but we give an individual with insurance 
benefits a value of 0.087 times the sample average hourly wage. Some individuals 

get none of these three benefits, and thus they have a value of zero for non-wage 
benefits and an undefined value for log non-wage benefits. To address these zeros 

in the outcome, we use the inverse hyperbolic sine in place of the natural log, given 
that the inverse hyperbolic sine closely mimics the log to a scaling additive constant 
while being defined at an input of zero.  


